cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A101973 Indices of primes in sequence defined by A(0) = 23, A(n) = 10*A(n-1) + 63 for n > 0.

Original entry on oeis.org

0, 1, 4, 9, 28, 38, 113, 483, 864, 4179, 5384, 13121, 13831, 22675, 25019, 30056, 35909, 37934, 42294, 50193, 110075, 184123, 191151
Offset: 1

Views

Author

Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 23 2004

Keywords

Comments

Numbers n such that (270*10^n - 63)/9 is prime.
Numbers n such that digit 2 followed by n >= 0 occurrences of digit 9 followed by digit 3 is prime.
Numbers corresponding to terms <= 864 are certified primes.
a(21) > 10^5. - Robert Price, Jan 25 2015
a(24) > 2*10^5. - Robert Price, Aug 09 2015

Examples

			293 is prime, hence 1 is a term.
		

References

  • Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 200000], PrimeQ[(270*10^# - 63)/9] &] (* Robert Price, Aug 09 2015 *)
  • PARI
    a=23;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a+63)
    
  • PARI
    for(n=0,1500,if(isprime((270*10^n-63)/9),print1(n,",")))

Formula

a(n) = A102964(n) - 1.

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(12)-a(20) derived from A102964 by Robert Price, Jan 25 2015
a(21)-a(23) derived from A102964 by Robert Price, Aug 09 2015

A329487 Primes p such that not all decimal digits of p occur in p^3.

Original entry on oeis.org

2, 3, 7, 13, 17, 19, 23, 31, 37, 41, 43, 47, 53, 79, 83, 89, 103, 107, 113, 127, 131, 139, 149, 157, 163, 167, 173, 179, 181, 193, 197, 199, 211, 223, 227, 239, 241, 257, 263, 269, 271, 277, 283, 293, 307, 313, 317, 349, 353, 359, 367, 373, 379, 383, 397, 409, 419, 421, 431, 433, 439, 443, 457
Offset: 1

Views

Author

Robert Israel, Nov 14 2019

Keywords

Comments

Complement of A030080 in the primes.
Includes 3*10^k-7 if k is in A102964.

Examples

			a(4)=13 is in the sequence because the digit 3 is in 13 but not in 13^3=2197.
		

Crossrefs

Programs

  • Maple
    filter:= proc(p)
    if not isprime(p) then return false fi;
      not (convert(convert(p,base,10),set) subset convert(convert(p^3,base,10), set))
    end proc:
    select(filter, [2,seq(i,i=3..10000,2)]);
Showing 1-2 of 2 results.