A328895 Decimal expansion of Sum_{k>=1} Kronecker(8,k)/k^2.
8, 7, 2, 3, 5, 8, 0, 2, 4, 9, 5, 4, 8, 5, 9, 9, 4, 1, 7, 6, 9, 6, 9, 5, 1, 1, 7, 0, 2, 1, 1, 7, 5, 6, 6, 1, 2, 3, 9, 9, 8, 3, 2, 8, 3, 8, 6, 8, 5, 0, 5, 2, 9, 5, 7, 6, 9, 1, 8, 7, 0, 8, 3, 4, 3, 9, 9, 8, 8, 4, 7, 0, 3, 5, 4, 1, 3, 4, 6, 5, 1, 8, 3, 3, 4, 2, 5, 1, 6, 7, 1
Offset: 0
Examples
1 - 1/3^2 - 1/5^2 + 1/7^2 + 1/9^2 - 1/11^2 - 1/13^2 + 1/15^2 + ... = Pi^2/(8*sqrt(2)) = 0.8723580249...
Links
- M. W. Coffey, Summatory relations and prime products for the Stieltjes constants and other related results, arXiv:1701.07064 [math.NT], 2017, eq. (2.1).
- R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, Section 2.2 at m=8, r=2, s=2.
- Eric Weisstein's World of Mathematics, Dirichlet L-Series.
- Eric Weisstein's World of Mathematics, Polygamma Function.
Crossrefs
Programs
-
Mathematica
RealDigits[Pi^2/(8*Sqrt[2]), 10, 102] // First
-
PARI
default(realprecision, 100); Pi^2/(8*sqrt(2))
Formula
Equals Pi^2/(8*sqrt(2)).
Equals (zeta(2,1/8) - zeta(2,3/8) - zeta(2,5/8) + zeta(2,7/8))/64, where zeta(s,a) is the Hurwitz zeta function.
Equals (polylog(2,u) - polylog(2,u^3) - polylog(2,-u) + polylog(2,-u^3))/sqrt(8), where u = sqrt(2)/2 + i*sqrt(2)/2 is an 8th primitive root of unity, i = sqrt(-1).
Equals (polygamma(1,1/8) - polygamma(1,3/8) - polygamma(1,5/8) + polygamma(1,7/8))/64.
Equals -Integral_{x=0..oo} log(x)/(x^4 + 1) dx. - Amiram Eldar, Jul 17 2020
Equals 1/(Product_{p prime == 1 or 7 (mod 8)} (1 - 1/p^2) * Product_{p prime == 3 or 5 (mod 8)} (1 + 1/p^2)). - Amiram Eldar, Dec 17 2023
Comments