cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A091337 a(n) = (2/n), where (k/n) is the Kronecker symbol.

Original entry on oeis.org

0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1
Offset: 0

Views

Author

Eric W. Weisstein, Dec 30 2003

Keywords

Comments

Sinh(1) in 'reflected factorial' base is 1.01010101010101010101010101010101010101010101... see A073097 for cosh(1). - Robert G. Wilson v, May 04 2005
A non-principal character for the Dirichlet L-series modulo 8, see arXiv:1008.2547 and L-values Sum_{n >= 1} a(n)/n^s in eq (318) by Jolley. - R. J. Mathar, Oct 06 2011 [The other two non-principal characters are A101455 = {(-4/n)} and A188510 = {(-2/n)}. - Jianing Song, Nov 14 2024]
Period 8: repeat [0, 1, 0, -1, 0, -1, 0, 1]. - Wesley Ivan Hurt, Sep 07 2015 [Adapted by Jianing Song, Nov 14 2024 to include a(0) = 0.]
a(n) = (2^(2i+1)/n), where (k/n) is the Kronecker symbol and i >= 0. - A.H.M. Smeets, Jan 23 2018

Examples

			G.f. = x - x^3 - x^5 + x^7 + x^9 - x^11 - x^13 + x^15 + x^17 - x^19 - x^21 + ...
		

References

  • L. B. W. Jolley, Summation of series, Dover (1961).

Crossrefs

Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017 (d=-24), A011586 (d=-23), A289741 (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), A101455 (d=-4), A102283 (d=-3), A080891 (d=5), this sequence (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), A322829 (d=21), A322796 (d=24).

Programs

  • Magma
    [(n mod 2) * (-1)^((n+1) div 4)  : n in [1..100]]; // Vincenzo Librandi, Oct 31 2014
  • Maple
    A091337:= n -> [0, 1, 0, -1, 0, -1, 0, 1][(n mod 8)+1]: seq(A091337(n), n=1..100); # Wesley Ivan Hurt, Sep 07 2015
  • Mathematica
    KroneckerSymbol[Range[100], 2] (* Alonso del Arte, Oct 30 2014 *)
  • PARI
    {a(n) = (n%2) * (-1)^((n+1)\4)}; /* Michael Somos, Sep 10 2005 */
    
  • PARI
    {a(n) = kronecker( 2, n)}; /* Michael Somos, Sep 10 2005 */
    
  • PARI
    {a(n) = [0, 1, 0, -1, 0, -1, 0, 1][n%8 + 1]}; /* Michael Somos, Jul 17 2009 */
    

Formula

Euler transform of length 8 sequence [0, -1, 0, -1, 0, 0, 0, 1]. - Michael Somos, Jul 17 2009
a(n) is multiplicative with a(2^e) = 0^e, a(p^e) = 1 if p == 1, 7 (mod 8), a(p^e) = (-1)^e if p == 3, 5 (mod 8). - Michael Somos, Jul 17 2009
G.f.: x*(1 - x^2)/(1 + x^4). a(n) = -a(n + 4) = a(-n) for all n in Z. a(2*n) = 0. a(2*n + 1) = A087960(n). - Michael Somos, Apr 10 2011
Transform of Pell numbers A000129 by the Riordan array A102587. - Paul Barry, Jul 14 2005
a(n) = (2/n) = (n/2), Charles R Greathouse IV explained. - Alonso del Arte, Oct 31 2014
a(n) = (1 - (-1)^n)*(-1)^(n/4 - 1/8 - (-1)^n/8 + (-1)^((2*n + 1 - (-1)^n)/4)/4)/2. - Wesley Ivan Hurt, Sep 07 2015
From Jianing Song, Nov 14 2018: (Start)
a(n) = sqrt(2)*sin(Pi*n/2)*sin(Pi*n/4).
E.g.f.: sqrt(2)*cos(x/sqrt(2))*sinh(x/sqrt(2)).
Moebius transform of A035185.
a(n) = A101455(n)*A188510(n). (End)
a(n) = Sum_{i=1..n} (-1)^(i + floor((i-3)/4)). - Wesley Ivan Hurt, Apr 27 2020
Sum_{n>=1} a(n)/n = A196525. Sum_{n>=1} a(n)/n^2 = A328895. Sum_{n>=1} a(n)/n^3 = A329715. Sum_{n>=1} a(n)/n^4 = A346728. - R. J. Mathar, Dec 17 2024

Extensions

a(0) prepended by Jianing Song, Nov 14 2024

A328717 Decimal expansion of Sum_{k>=1} Kronecker(5,k)/k^2.

Original entry on oeis.org

7, 0, 6, 2, 1, 1, 4, 0, 3, 2, 5, 9, 7, 4, 0, 9, 6, 9, 9, 3, 1, 0, 0, 3, 1, 7, 5, 7, 6, 2, 5, 6, 4, 0, 2, 7, 6, 6, 0, 2, 4, 6, 4, 7, 1, 8, 5, 2, 9, 4, 6, 8, 6, 3, 9, 4, 2, 1, 1, 7, 4, 0, 2, 1, 6, 5, 6, 7, 7, 6, 0, 4, 4, 3, 8, 3, 8, 3, 0, 0, 7, 6, 8, 3, 3, 7, 4, 5, 6, 6, 4
Offset: 0

Views

Author

Jianing Song, Nov 19 2019

Keywords

Comments

Let Chi() be a primitive character modulo d, the so-called Dirichlet L-series L(s,Chi) is the analytic continuation (see the functional equations involving L(s,Chi) in the MathWorld link entitled Dirichlet L-Series) of the sum Sum_{k>=1} Chi(k)/k^s, Re(s)>0 (if d = 1, the sum converges requires Re(s)>1).
If s != 1, we can represent L(s,Chi) in terms of the Hurwitz zeta function by L(s,Chi) = (Sum_{k=1..d} Chi(k)*zeta(s,k/d))/d^s.
L(s,Chi) can also be represented in terms of the polylog function by L(s,Chi) = (Sum_{k=1..d} Chi'(k)*polylog(s,u^k))/(Sum_{k=1..d} Chi'(k)*u^k), where Chi' is the complex conjugate of Chi, u is any primitive d-th root of unity.
If m is a positive integer, we have L(m,Chi) = (Sum_{k=1..d} Chi(k)*polygamma(m-1,k/d))/((-d)^m*(m-1)!).
In this sequence we have Chi = A080891 and s = 2.

Examples

			1 - 1/2^2 - 1/3^2 + 1/4^2 + 1/6^2 - 1/7^2 - 1/8^2 + 1/9^2 + ... = 4*Pi^2/(25*sqrt(5)) = 0.70621140325974096993100317576256402766024647185294...
		

Crossrefs

Decimal expansion of Sum_{k>=1} Kronecker(d,k)/k^2, where d is a fundamental discriminant: A309710 (d=-8), A103133 (d=-7), A006752 (d=-4), A086724 (d=-3), A013661 (d=1), this sequence (d=5), A328895 (d=8), A258414 (d=12).
Decimal expansion of Sum_{k>=1} Kronecker(5,k)/k^s: A086466 (s=1), this sequence (s=2), A328723 (s=3).

Programs

  • Mathematica
    RealDigits[4*Pi^2/(25*Sqrt[5]), 10, 102] // First
  • PARI
    default(realprecision, 100); 4*Pi^2/(25*sqrt(5))

Formula

Equals 4*Pi^2/(25*sqrt(5)).
Equals (zeta(2,1/5) - zeta(2,2/5) - zeta(2,3/5) + zeta(2,4/5))/25, where zeta(s,a) is the Hurwitz zeta function.
Equals (polylog(2,u) - polylog(2,u^2) - polylog(2,u^3) + polylog(2,u^4))/sqrt(5), where u = exp(2*Pi*i/5) is a 5th primitive root of unity, i = sqrt(-1).
Equals (polygamma(1,1/5) - polygamma(1,2/5) - polygamma(1,3/5) - polygamma(1,4/5))/25.
Equals Sum_{k>=1} Fibonacci(2*k)/(k^2*binomial(2*k,k)) = Sum_{k>=1} A001906(k)/A002736(k) (Seiffert, 1991). - Amiram Eldar, Jan 17 2022
Equals 1/(Product_{p prime == 1 or 4 (mod 5)} (1 - 1/p^2) * Product_{p prime == 2 or 3 (mod 5)} (1 + 1/p^2)). - Amiram Eldar, Dec 17 2023

A309710 Decimal expansion of Sum_{k>=1} Kronecker(-8,k)/k^2.

Original entry on oeis.org

1, 0, 6, 4, 7, 3, 4, 1, 7, 1, 0, 4, 3, 5, 0, 3, 3, 7, 0, 3, 9, 2, 8, 2, 7, 4, 5, 1, 4, 6, 1, 6, 6, 8, 8, 8, 9, 4, 8, 3, 0, 9, 9, 1, 5, 1, 7, 7, 4, 4, 8, 5, 1, 2, 4, 4, 1, 9, 8, 7, 4, 5, 0, 8, 0, 6, 3, 9, 9, 0, 1, 7, 1, 7, 5, 8, 6, 4, 3, 7, 6, 3, 6, 6, 6, 5, 3, 4, 2, 5, 0
Offset: 1

Views

Author

Jianing Song, Nov 19 2019

Keywords

Comments

Let Chi() be a primitive character modulo d, the so-called Dirichlet L-series L(s,Chi) is the analytic continuation (see the functional equations involving L(s,Chi) in the MathWorld link entitled Dirichlet L-Series) of the sum Sum_{k>=1} Chi(k)/k^s, Re(s)>0 (if d = 1, the sum converges requires Re(s)>1).
If s != 1, we can represent L(s,Chi) in terms of the Hurwitz zeta function by L(s,Chi) = (Sum_{k=1..d} Chi(k)*zeta(s,k/d))/d^s.
L(s,Chi) can also be represented in terms of the polylog function by L(s,Chi) = (Sum_{k=1..d} Chi'(k)*polylog(s,u^k))/(Sum_{k=1..d} Chi'(k)*u^k), where Chi' is the complex conjugate of Chi, u is any primitive d-th root of unity.
If m is a positive integer, we have L(m,Chi) = (Sum_{k=1..d} Chi(k)*polygamma(m-1,k/d))/((-d)^m*(m-1)!).
In this sequence we have Chi = A188510 and s = 2.

Examples

			1 + 1/3^2 - 1/5^2 - 1/7^2 + 1/9^2 + 1/11^2 - 1/13^2 - 1/15^2 + ...= 1.0647341710...
		

Crossrefs

Cf. A188510.
Decimal expansion of Sum_{k>=1} Kronecker(d,k)/k^2, where d is a fundamental discriminant: this sequence (d=-8), A103133 (d=-7), A006752 (d=-4), A086724 (d=-3), A013661 (d=1), A328717 (d=5), A328895 (d=8), A258414 (d=12).
Decimal expansion of Sum_{k>=1} Kronecker(-8,k)/k^s: A093954 (s=1), this sequence (s=2), A251809 (s=3).

Programs

  • Mathematica
    (PolyGamma[1, 1/8] + PolyGamma[1, 3/8] - PolyGamma[1, 5/8] - PolyGamma[1, 7/8])/64 // RealDigits[#, 10, 102] & // First

Formula

Equals (zeta(2,1/8) + zeta(2,3/8) - zeta(2,5/8) - zeta(2,7/8))/64, where zeta(s,a) is the Hurwitz zeta function.
Equals (polylog(2,u) + polylog(2,u^3) - polylog(2,-u) - polylog(2,-u^3))/sqrt(-8), where u = sqrt(2)/2 + i*sqrt(2)/2 is an 8th primitive root of unity, i = sqrt(-1).
Equals (polygamma(1,1/8) + polygamma(1,3/8) - polygamma(1,5/8) - polygamma(1,7/8))/64.
Equals 1/(Product_{p prime == 1 or 3 (mod 8)} (1 - 1/p^2) * Product_{p prime == 5 or 7 (mod 8)} (1 + 1/p^2)). - Amiram Eldar, Dec 17 2023

A329715 Decimal expansion of Sum_{k>=1} Kronecker(8,k)/k^3.

Original entry on oeis.org

9, 5, 8, 3, 8, 0, 4, 5, 4, 5, 6, 3, 0, 9, 4, 5, 6, 2, 0, 5, 1, 6, 6, 9, 4, 0, 2, 8, 6, 1, 5, 7, 7, 8, 1, 8, 8, 2, 4, 8, 9, 5, 3, 1, 7, 9, 3, 9, 7, 7, 5, 3, 4, 0, 7, 5, 7, 5, 0, 4, 5, 0, 7, 0, 4, 7, 0, 7, 5, 6, 9, 7, 4, 8, 4, 2, 9, 7, 9, 3, 6, 4, 7, 8, 2, 5, 2, 6, 9, 9, 7
Offset: 0

Views

Author

Jianing Song, Nov 19 2019

Keywords

Comments

Let Chi() be a primitive character modulo d, the so-called Dirichlet L-series L(s,Chi) is the analytic continuation (see the functional equations involving L(s,Chi) in the MathWorld link entitled Dirichlet L-Series) of the sum Sum_{k>=1} Chi(k)/k^s, Re(s)>0 (if d = 1, the sum converges requires Re(s)>1).
If s != 1, we can represent L(s,Chi) in terms of the Hurwitz zeta function by L(s,Chi) = (Sum_{k=1..d} Chi(k)*zeta(s,k/d))/d^s.
L(s,Chi) can also be represented in terms of the polylog function by L(s,Chi) = (Sum_{k=1..d} Chi'(k)*polylog(s,u^k))/(Sum_{k=1..d} Chi'(k)*u^k), where Chi' is the complex conjugate of Chi, u is any primitive d-th root of unity.
If m is a positive integer, we have L(m,Chi) = (Sum_{k=1..d} Chi(k)*polygamma(m-1,k/d))/((-d)^m*(m-1)!).
In this sequence we have Chi = A091337 and s = 3.

Examples

			1 - 1/3^3 - 1/5^3 + 1/7^3 + 1/9^3 - 1/11^3 - 1/13^3 + 1/15^3 + ... = 0.9583804545...
		

Crossrefs

Cf. A091337.
Decimal expansion of Sum_{k>=1} Kronecker(d,k)/k^3, where d is a fundamental discriminant: A251809 (d=-8), A327135 (d=-7), A153071 (d=-4), A129404 (d=-3), A002117 (d=1), A328723 (d=5), this sequence (d=8), A329716 (d=12).
Decimal expansion of Sum_{k>=1} Kronecker(8,k)/k^s: A196525 (s=1), A328895 (s=2), this sequence (s=3).

Programs

  • Mathematica
    (PolyGamma[2, 1/8] - PolyGamma[2, 3/8] - PolyGamma[2, 5/8] + PolyGamma[2, 7/8])/(-1024) // RealDigits[#, 10, 102] & // First

Formula

Equals (zeta(3,1/8) - zeta(3,3/8) - zeta(3,5/8) + zeta(3,7/8))/512, where zeta(s,a) is the Hurwitz zeta function.
Equals (polylog(3,u) - polylog(3,u^3) - polylog(3,-u) + polylog(3,-u^3))/sqrt(8), where u = sqrt(2)/2 + i*sqrt(2)/2 is an 8th primitive root of unity, i = sqrt(-1).
Equals (polygamma(2,1/8) - polygamma(2,3/8) - polygamma(2,5/8) + polygamma(2,7/8))/(-1024).
Equals 1/(Product_{p prime == 1 or 7 (mod 8)} (1 - 1/p^3) * Product_{p prime == 3 or 5 (mod 8)} (1 + 1/p^3)). - Amiram Eldar, Dec 17 2023

A346728 Decimal expansion of 11 * Pi^4 / (768 * sqrt(2)).

Original entry on oeis.org

9, 8, 6, 5, 4, 2, 8, 6, 0, 6, 9, 3, 9, 7, 0, 5, 0, 3, 9, 0, 1, 5, 3, 4, 4, 9, 0, 6, 1, 6, 7, 2, 6, 9, 1, 0, 9, 6, 6, 8, 3, 3, 7, 5, 7, 9, 0, 9, 5, 0, 0, 8, 5, 2, 5, 1, 7, 0, 9, 5, 2, 7, 2, 3, 1, 9, 5, 9, 4, 5, 4, 9, 5, 6, 2, 3, 9, 4, 2, 9, 7, 0, 7, 2, 0, 7, 1
Offset: 0

Views

Author

Sean A. Irvine, Jul 30 2021

Keywords

Examples

			0.98654286069397050390153449061672691096683375790950...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eqs. (327), (344).

Crossrefs

Programs

  • Mathematica
    RealDigits[11*Pi^4/(768*Sqrt[2]), 10, 120][[1]] (* Amiram Eldar, Jun 13 2023 *)

Formula

Equals 11 * Pi^4 / (2^8 * 3 * sqrt(2)).
Equals 1 + Sum_{k>=1} ( (-1)^k/(4*k-1)^4 + (-1)^k/(4*k+1) ).
Equals Sum_{k>=0} (-1)^floor((k+1)/2) / (2*k+1)^4.

A088964 Number of solutions to x^2 == 2y^2 (mod n).

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 13, 8, 9, 2, 1, 4, 1, 26, 1, 16, 33, 18, 1, 4, 13, 2, 45, 8, 25, 2, 9, 52, 1, 2, 61, 32, 1, 66, 13, 36, 1, 2, 1, 8, 81, 26, 1, 4, 9, 90, 93, 16, 133, 50, 33, 4, 1, 18, 1, 104, 1, 2, 1, 4, 1, 122, 117, 64, 1, 2, 1, 132, 45, 26
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 28 2003

Keywords

Crossrefs

Programs

  • Maple
    A088964 := proc(n) local a,x,y ; a := 0 ; for x from 0 to n-1 do for y from 0 to n-1 do if (x^2-2*y^2) mod n = 0 then a := a+1 ; end if; end do; end do ; a ; end proc:
    seq(A088964(n),n=1..70) ; # R. J. Mathar, Jan 07 2011
  • Mathematica
    a[n_] := Product[{p, e} = pe; Which[p == 2, 2^e, Abs[Mod[p, 8] - 4] == 1, (p^2)^Quotient[e, 2], True, (p+e(p-1))p^(e-1)], {pe, FactorInteger[n]}];
    Array[a, 100] (* Jean-François Alcover, Apr 08 2020, after Andrew Howroyd *)
    f[2, e_] := 2^e; f[p_, e_] := If[MemberQ[{1, 7}, Mod[p, 8]], ((p-1)*e + p)*p^(e-1), p^(2*Floor[e/2])]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 20 2020 *)
  • PARI
    a(n)={my(v=vector(n)); for(i=0, n-1, v[i^2%n + 1]++); sum(i=0, n-1, v[i+1]*v[2*i%n + 1])} \\ Andrew Howroyd, Jul 09 2018
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); if(p==2, 2^e, if(abs(p%8-4)==1, (p^2)^(e\2), (p+e*(p-1))*p^(e-1))))} \\ Andrew Howroyd, Jul 09 2018

Formula

Multiplicative with a(2^e) = 2^e, a(p^e) = p^(2*floor(e/2)) for p mod 8 = +-3, a(p^e) = ((p-1)*e+p)*p^(e-1) for p mod 8 = +-1. - Andrew Howroyd, Jul 13 2018
Sum_{k=1..n} a(k) ~ c * n^2, where c = (64/Pi^4) * A328895 * A196525 = 0.35720726027165235652... . - Amiram Eldar, Nov 21 2023

A124340 Number of solutions to n = x^2 + 2*y^2 + 4*(T(z) + T(w)) + 1 where x and y are integers, z and w are nonnegative integers and T(x) = (x^2+x)/2.

Original entry on oeis.org

1, 2, 2, 4, 4, 4, 8, 8, 7, 8, 10, 8, 12, 16, 8, 16, 18, 14, 18, 16, 16, 20, 24, 16, 21, 24, 20, 32, 28, 16, 32, 32, 20, 36, 32, 28, 36, 36, 24, 32, 42, 32, 42, 40, 28, 48, 48, 32, 57, 42, 36, 48, 52, 40, 40, 64, 36, 56, 58, 32, 60, 64, 56, 64, 48, 40, 66
Offset: 1

Views

Author

Michael Somos, Oct 26 2006

Keywords

Comments

Number 18 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 2*q^2 + 2*q^3 + 4*q^4 + 4*q^5 + 4*q^6 + 8*q^7 + 8*q^8 + 7*q^9 + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    A091337 := n -> [0, 1, 0, -1, 0, -1, 0, 1][`mod`(n, 8)+1]:
    seq(add(A091337(n/d)d, d in divisors(n)), n = 1..60); # Peter Bala, Jan 06 2021
  • Mathematica
    a[n_] := Sum[JacobiSymbol[2, d]*n/d, {d, Divisors[n]}]; a /@ Range[80] (* Jean-François Alcover, Jan 10 2014 *)
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q^2]^3 QPochhammer[ q^4] QPochhammer[ q^8]^2 / QPochhammer[ q]^2, {q, 0, n}]; (* Michael Somos, Jul 09 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, n / d * kronecker(2, d)))};
    
  • PARI
    {a(n) = my(A, p, e, f); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; f = kronecker( 2, p); (p^(e+1) - f^(e+1)) / (p - f)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^4 + A) * eta(x^8 + A)^2 / eta(x + A)^2, n))};

Formula

Expansion of q * phi(q) * phi(q^2) * psi(q^4)^2 in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q^2)^3 * eta(q^4) * eta(q^8)^2 / eta(q)^2 in powers of q.
Euler transform of period 8 sequence [ 2, -1, 2, -2, 2, -1, 2, -4, ...].
a(n) is multiplicative with a(2^e) = 2^e, a(p^e) = (p^(e+1) - 1)/(p - 1) if p == 1, 7 (mod 8), a(p^e) = (p^(e+1) + (-1)^e)/(p + 1) if p == 3, 5 (mod 8).
G.f.: Sum_{k>0} k * x^k * (1 - x^(2*k)) / (1 + x^(4*k)).
G.f.: x * Product_{k>0} (1 + x^k)^2 * (1 - x^(2*k)) * (1 - x^(4*k)) * (1 - x^(8*k))^2.
From Peter Bala, Jan 06 2021: (Start)
a(n) = Sum_{ d | n } X(n/d)*d, where X(k) = A091337(k) is a non-principal Dirichlet charcter modulo 8.
G.f.: A(x) = Sum_{n = -oo..oo} (-1)^n*x^(4*n+1)/(1 - x^(4*n+1))^2. (End)
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A328895. - Amiram Eldar, Feb 20 2024

A346260 Decimal expansion of 24611 * Pi^8 / (165150720 * sqrt(2)).

Original entry on oeis.org

9, 9, 9, 8, 4, 5, 2, 1, 5, 4, 7, 9, 2, 2, 5, 6, 0, 0, 4, 6, 2, 8, 7, 9, 8, 8, 9, 4, 7, 7, 1, 8, 5, 2, 0, 7, 7, 8, 4, 9, 4, 8, 3, 3, 3, 9, 8, 9, 4, 8, 1, 7, 9, 6, 9, 9, 4, 0, 6, 5, 5, 7, 0, 0, 7, 9, 7, 5, 5, 5, 3, 4, 6, 3, 8, 9, 9, 4, 2, 5, 3, 6, 8, 9, 7, 1, 5
Offset: 0

Views

Author

Sean A. Irvine, Jul 30 2021

Keywords

Examples

			0.99984521547922560046287988947718520...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (327).

Crossrefs

Programs

  • Mathematica
    RealDigits[24611 * Pi^8 / (165150720 * Sqrt[2]), 10, 120][[1]] (* Amiram Eldar, Jun 20 2023 *)

Formula

Equals 24611 * Pi^8 / (2^19 * 3^2 * 5 * 7 * sqrt(2)).
Equals 1 + Sum_{k>=1} ( (-1)^k/(4*k-1)^8 + (-1)^k/(4*k+1)^8 ).

A346727 Decimal expansion of 361 * Pi^6 / (245760 * sqrt(2)).

Original entry on oeis.org

9, 9, 8, 5, 7, 3, 9, 7, 1, 9, 5, 3, 5, 3, 0, 5, 4, 7, 6, 7, 0, 2, 7, 0, 5, 1, 6, 1, 0, 6, 6, 6, 8, 0, 7, 3, 0, 3, 1, 9, 5, 4, 9, 3, 0, 0, 6, 3, 6, 8, 7, 6, 6, 5, 2, 3, 2, 2, 9, 2, 5, 1, 8, 8, 3, 7, 6, 4, 8, 7, 4, 6, 1, 2, 3, 2, 5, 1, 3, 8, 0, 0, 8, 8, 3, 1, 2
Offset: 0

Views

Author

Sean A. Irvine, Jul 30 2021

Keywords

Comments

Shamos (2011) has incorrect formula 19^2*Pi^4 / (2^14*3*5*sqrt(3)).

Examples

			0.998573971953530547670270516106668073031954930...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (327).

Crossrefs

Programs

  • Mathematica
    RealDigits[361*Pi^6/(245760*Sqrt[2]), 10, 120][[1]] (* Amiram Eldar, Jun 13 2023 *)

Formula

Equals 19^2 * Pi^6 / (2^14 * 3 * 5 * sqrt(2)).
Equals 1 + Sum_{k>=1} ( (-1)^k/(4*k-1)^6 + (-1)^k/(4*k+1)^6 ).

A089003 Number of non-congruent solutions to x^2 - 2y^2 == 1 (mod n).

Original entry on oeis.org

1, 2, 4, 4, 6, 8, 6, 16, 12, 12, 12, 16, 14, 12, 24, 32, 16, 24, 20, 24, 24, 24, 22, 64, 30, 28, 36, 24, 30, 48, 30, 64, 48, 32, 36, 48, 38, 40, 56, 96, 40, 48, 44, 48, 72, 44, 46, 128, 42, 60, 64, 56, 54, 72, 72, 96, 80, 60, 60, 96, 62, 60, 72, 128, 84, 96, 68, 64, 88, 72
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 02 2003

Keywords

Comments

Also, the number of non-congruent solutions to x^2 - 2y^2 == -1 (mod n). - Andrew Howroyd, Jul 16 2018
The comment above is based on the identity -(x^2 - 2y^2) = (x-2y)^2 - 2(x-y)^2. - Jianing Song, Jul 17 2018

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else #[x: x in [1..n], y in [1..n] | (x^2-2*y^2) mod n eq 1]: n in [1..80]]; // Vincenzo Librandi, Jul 16 2018
  • Mathematica
    a[1]=1; a[n_]:=Length@Rest@Union@Flatten@Table[If[Mod[i^2 - 2 j^2, n]==1, i+I j, 0], {i, 0, n-1}, {j, 0, n-1}]; Table[a[n], {n, 1, 80}] (* Vincenzo Librandi, Jul 16 2018 *)
    f[2, e_] := If[e < 3, 2^e, 2^(e+1)]; f[p_, e_] := If[MemberQ[{1, 7}, Mod[p, 8]], (p - 1), (p + 1)] * p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 11 2020 *)
  • PARI
    a(n)={my(v=vector(n)); for(i=0, n-1, v[i^2%n + 1]++); sum(i=0, n-1, v[i+1]*v[(2*i+1)%n + 1])} \\ Andrew Howroyd, Jul 09 2018
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); if(p==2, 2^e*if(e>2,2,1), p^(e-1)*if(abs(p%8-4)==1, p+1, p-1)))} \\ Andrew Howroyd, Jul 09 2018
    

Formula

Multiplicative with a(2^e) = 2^e for e <= 2, a(2^e) = 2^(e+1) for e > 2, a(p^e) = (p-1)*p^(e-1) for p == +-1 (mod 8), a(p^e) = (p+1)*p^(e-1) for p == +-3 (mod 8). - Andrew Howroyd, Jul 15 2018
Sum_{k=1..n} a(k) ~ c * n^2, where c = 9/(16*A328895) = 0.644804064282100795... . - Amiram Eldar, Nov 21 2023
Showing 1-10 of 10 results.