cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A328895 Decimal expansion of Sum_{k>=1} Kronecker(8,k)/k^2.

Original entry on oeis.org

8, 7, 2, 3, 5, 8, 0, 2, 4, 9, 5, 4, 8, 5, 9, 9, 4, 1, 7, 6, 9, 6, 9, 5, 1, 1, 7, 0, 2, 1, 1, 7, 5, 6, 6, 1, 2, 3, 9, 9, 8, 3, 2, 8, 3, 8, 6, 8, 5, 0, 5, 2, 9, 5, 7, 6, 9, 1, 8, 7, 0, 8, 3, 4, 3, 9, 9, 8, 8, 4, 7, 0, 3, 5, 4, 1, 3, 4, 6, 5, 1, 8, 3, 3, 4, 2, 5, 1, 6, 7, 1
Offset: 0

Views

Author

Jianing Song, Nov 19 2019

Keywords

Comments

Let Chi() be a primitive character modulo d, the so-called Dirichlet L-series L(s,Chi) is the analytic continuation (see the functional equations involving L(s,Chi) in the MathWorld link entitled Dirichlet L-Series) of the sum Sum_{k>=1} Chi(k)/k^s, Re(s)>0 (if d = 1, the sum converges requires Re(s)>1).
If s != 1, we can represent L(s,Chi) in terms of the Hurwitz zeta function by L(s,Chi) = (Sum_{k=1..d} Chi(k)*zeta(s,k/d))/d^s.
L(s,Chi) can also be represented in terms of the polylog function by L(s,Chi) = (Sum_{k=1..d} Chi'(k)*polylog(s,u^k))/(Sum_{k=1..d} Chi'(k)*u^k), where Chi' is the complex conjugate of Chi, u is any primitive d-th root of unity.
If m is a positive integer, we have L(m,Chi) = (Sum_{k=1..d} Chi(k)*polygamma(m-1,k/d))/((-d)^m*(m-1)!).
In this sequence we have Chi = A091337 and s = 2.

Examples

			1 - 1/3^2 - 1/5^2 + 1/7^2 + 1/9^2 - 1/11^2 - 1/13^2 + 1/15^2 + ... = Pi^2/(8*sqrt(2)) = 0.8723580249...
		

Crossrefs

Decimal expansion of Sum_{k>=1} Kronecker(d,k)/k^2, where d is a fundamental discriminant: A309710 (d=-8), A103133 (d=-7), A006752 (d=-4), A086724 (d=-3), A013661 (d=1), A328717 (d=5), this sequence (d=8), A258414 (d=12).
Decimal expansion of Sum_{k>=1} Kronecker(8,k)/k^s: A196525 (s=1), this sequence (s=2), A329715 (s=3).

Programs

  • Mathematica
    RealDigits[Pi^2/(8*Sqrt[2]), 10, 102] // First
  • PARI
    default(realprecision, 100); Pi^2/(8*sqrt(2))

Formula

Equals Pi^2/(8*sqrt(2)).
Equals (zeta(2,1/8) - zeta(2,3/8) - zeta(2,5/8) + zeta(2,7/8))/64, where zeta(s,a) is the Hurwitz zeta function.
Equals (polylog(2,u) - polylog(2,u^3) - polylog(2,-u) + polylog(2,-u^3))/sqrt(8), where u = sqrt(2)/2 + i*sqrt(2)/2 is an 8th primitive root of unity, i = sqrt(-1).
Equals (polygamma(1,1/8) - polygamma(1,3/8) - polygamma(1,5/8) + polygamma(1,7/8))/64.
Equals -Integral_{x=0..oo} log(x)/(x^4 + 1) dx. - Amiram Eldar, Jul 17 2020
Equals 1/(Product_{p prime == 1 or 7 (mod 8)} (1 - 1/p^2) * Product_{p prime == 3 or 5 (mod 8)} (1 + 1/p^2)). - Amiram Eldar, Dec 17 2023

A346728 Decimal expansion of 11 * Pi^4 / (768 * sqrt(2)).

Original entry on oeis.org

9, 8, 6, 5, 4, 2, 8, 6, 0, 6, 9, 3, 9, 7, 0, 5, 0, 3, 9, 0, 1, 5, 3, 4, 4, 9, 0, 6, 1, 6, 7, 2, 6, 9, 1, 0, 9, 6, 6, 8, 3, 3, 7, 5, 7, 9, 0, 9, 5, 0, 0, 8, 5, 2, 5, 1, 7, 0, 9, 5, 2, 7, 2, 3, 1, 9, 5, 9, 4, 5, 4, 9, 5, 6, 2, 3, 9, 4, 2, 9, 7, 0, 7, 2, 0, 7, 1
Offset: 0

Views

Author

Sean A. Irvine, Jul 30 2021

Keywords

Examples

			0.98654286069397050390153449061672691096683375790950...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eqs. (327), (344).

Crossrefs

Programs

  • Mathematica
    RealDigits[11*Pi^4/(768*Sqrt[2]), 10, 120][[1]] (* Amiram Eldar, Jun 13 2023 *)

Formula

Equals 11 * Pi^4 / (2^8 * 3 * sqrt(2)).
Equals 1 + Sum_{k>=1} ( (-1)^k/(4*k-1)^4 + (-1)^k/(4*k+1) ).
Equals Sum_{k>=0} (-1)^floor((k+1)/2) / (2*k+1)^4.

A346727 Decimal expansion of 361 * Pi^6 / (245760 * sqrt(2)).

Original entry on oeis.org

9, 9, 8, 5, 7, 3, 9, 7, 1, 9, 5, 3, 5, 3, 0, 5, 4, 7, 6, 7, 0, 2, 7, 0, 5, 1, 6, 1, 0, 6, 6, 6, 8, 0, 7, 3, 0, 3, 1, 9, 5, 4, 9, 3, 0, 0, 6, 3, 6, 8, 7, 6, 6, 5, 2, 3, 2, 2, 9, 2, 5, 1, 8, 8, 3, 7, 6, 4, 8, 7, 4, 6, 1, 2, 3, 2, 5, 1, 3, 8, 0, 0, 8, 8, 3, 1, 2
Offset: 0

Views

Author

Sean A. Irvine, Jul 30 2021

Keywords

Comments

Shamos (2011) has incorrect formula 19^2*Pi^4 / (2^14*3*5*sqrt(3)).

Examples

			0.998573971953530547670270516106668073031954930...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (327).

Crossrefs

Programs

  • Mathematica
    RealDigits[361*Pi^6/(245760*Sqrt[2]), 10, 120][[1]] (* Amiram Eldar, Jun 13 2023 *)

Formula

Equals 19^2 * Pi^6 / (2^14 * 3 * 5 * sqrt(2)).
Equals 1 + Sum_{k>=1} ( (-1)^k/(4*k-1)^6 + (-1)^k/(4*k+1)^6 ).
Showing 1-3 of 3 results.