cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A091337 a(n) = (2/n), where (k/n) is the Kronecker symbol.

Original entry on oeis.org

0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1
Offset: 0

Views

Author

Eric W. Weisstein, Dec 30 2003

Keywords

Comments

Sinh(1) in 'reflected factorial' base is 1.01010101010101010101010101010101010101010101... see A073097 for cosh(1). - Robert G. Wilson v, May 04 2005
A non-principal character for the Dirichlet L-series modulo 8, see arXiv:1008.2547 and L-values Sum_{n >= 1} a(n)/n^s in eq (318) by Jolley. - R. J. Mathar, Oct 06 2011 [The other two non-principal characters are A101455 = {(-4/n)} and A188510 = {(-2/n)}. - Jianing Song, Nov 14 2024]
Period 8: repeat [0, 1, 0, -1, 0, -1, 0, 1]. - Wesley Ivan Hurt, Sep 07 2015 [Adapted by Jianing Song, Nov 14 2024 to include a(0) = 0.]
a(n) = (2^(2i+1)/n), where (k/n) is the Kronecker symbol and i >= 0. - A.H.M. Smeets, Jan 23 2018

Examples

			G.f. = x - x^3 - x^5 + x^7 + x^9 - x^11 - x^13 + x^15 + x^17 - x^19 - x^21 + ...
		

References

  • L. B. W. Jolley, Summation of series, Dover (1961).

Crossrefs

Kronecker symbols {(d/n)} where d is a fundamental discriminant with |d| <= 24: A109017 (d=-24), A011586 (d=-23), A289741 (d=-20), A011585 (d=-19), A316569 (d=-15), A011582 (d=-11), A188510 (d=-8), A175629 (d=-7), A101455 (d=-4), A102283 (d=-3), A080891 (d=5), this sequence (d=8), A110161 (d=12), A011583 (d=13), A011584 (d=17), A322829 (d=21), A322796 (d=24).

Programs

  • Magma
    [(n mod 2) * (-1)^((n+1) div 4)  : n in [1..100]]; // Vincenzo Librandi, Oct 31 2014
  • Maple
    A091337:= n -> [0, 1, 0, -1, 0, -1, 0, 1][(n mod 8)+1]: seq(A091337(n), n=1..100); # Wesley Ivan Hurt, Sep 07 2015
  • Mathematica
    KroneckerSymbol[Range[100], 2] (* Alonso del Arte, Oct 30 2014 *)
  • PARI
    {a(n) = (n%2) * (-1)^((n+1)\4)}; /* Michael Somos, Sep 10 2005 */
    
  • PARI
    {a(n) = kronecker( 2, n)}; /* Michael Somos, Sep 10 2005 */
    
  • PARI
    {a(n) = [0, 1, 0, -1, 0, -1, 0, 1][n%8 + 1]}; /* Michael Somos, Jul 17 2009 */
    

Formula

Euler transform of length 8 sequence [0, -1, 0, -1, 0, 0, 0, 1]. - Michael Somos, Jul 17 2009
a(n) is multiplicative with a(2^e) = 0^e, a(p^e) = 1 if p == 1, 7 (mod 8), a(p^e) = (-1)^e if p == 3, 5 (mod 8). - Michael Somos, Jul 17 2009
G.f.: x*(1 - x^2)/(1 + x^4). a(n) = -a(n + 4) = a(-n) for all n in Z. a(2*n) = 0. a(2*n + 1) = A087960(n). - Michael Somos, Apr 10 2011
Transform of Pell numbers A000129 by the Riordan array A102587. - Paul Barry, Jul 14 2005
a(n) = (2/n) = (n/2), Charles R Greathouse IV explained. - Alonso del Arte, Oct 31 2014
a(n) = (1 - (-1)^n)*(-1)^(n/4 - 1/8 - (-1)^n/8 + (-1)^((2*n + 1 - (-1)^n)/4)/4)/2. - Wesley Ivan Hurt, Sep 07 2015
From Jianing Song, Nov 14 2018: (Start)
a(n) = sqrt(2)*sin(Pi*n/2)*sin(Pi*n/4).
E.g.f.: sqrt(2)*cos(x/sqrt(2))*sinh(x/sqrt(2)).
Moebius transform of A035185.
a(n) = A101455(n)*A188510(n). (End)
a(n) = Sum_{i=1..n} (-1)^(i + floor((i-3)/4)). - Wesley Ivan Hurt, Apr 27 2020
Sum_{n>=1} a(n)/n = A196525. Sum_{n>=1} a(n)/n^2 = A328895. Sum_{n>=1} a(n)/n^3 = A329715. Sum_{n>=1} a(n)/n^4 = A346728. - R. J. Mathar, Dec 17 2024

Extensions

a(0) prepended by Jianing Song, Nov 14 2024

A328895 Decimal expansion of Sum_{k>=1} Kronecker(8,k)/k^2.

Original entry on oeis.org

8, 7, 2, 3, 5, 8, 0, 2, 4, 9, 5, 4, 8, 5, 9, 9, 4, 1, 7, 6, 9, 6, 9, 5, 1, 1, 7, 0, 2, 1, 1, 7, 5, 6, 6, 1, 2, 3, 9, 9, 8, 3, 2, 8, 3, 8, 6, 8, 5, 0, 5, 2, 9, 5, 7, 6, 9, 1, 8, 7, 0, 8, 3, 4, 3, 9, 9, 8, 8, 4, 7, 0, 3, 5, 4, 1, 3, 4, 6, 5, 1, 8, 3, 3, 4, 2, 5, 1, 6, 7, 1
Offset: 0

Views

Author

Jianing Song, Nov 19 2019

Keywords

Comments

Let Chi() be a primitive character modulo d, the so-called Dirichlet L-series L(s,Chi) is the analytic continuation (see the functional equations involving L(s,Chi) in the MathWorld link entitled Dirichlet L-Series) of the sum Sum_{k>=1} Chi(k)/k^s, Re(s)>0 (if d = 1, the sum converges requires Re(s)>1).
If s != 1, we can represent L(s,Chi) in terms of the Hurwitz zeta function by L(s,Chi) = (Sum_{k=1..d} Chi(k)*zeta(s,k/d))/d^s.
L(s,Chi) can also be represented in terms of the polylog function by L(s,Chi) = (Sum_{k=1..d} Chi'(k)*polylog(s,u^k))/(Sum_{k=1..d} Chi'(k)*u^k), where Chi' is the complex conjugate of Chi, u is any primitive d-th root of unity.
If m is a positive integer, we have L(m,Chi) = (Sum_{k=1..d} Chi(k)*polygamma(m-1,k/d))/((-d)^m*(m-1)!).
In this sequence we have Chi = A091337 and s = 2.

Examples

			1 - 1/3^2 - 1/5^2 + 1/7^2 + 1/9^2 - 1/11^2 - 1/13^2 + 1/15^2 + ... = Pi^2/(8*sqrt(2)) = 0.8723580249...
		

Crossrefs

Decimal expansion of Sum_{k>=1} Kronecker(d,k)/k^2, where d is a fundamental discriminant: A309710 (d=-8), A103133 (d=-7), A006752 (d=-4), A086724 (d=-3), A013661 (d=1), A328717 (d=5), this sequence (d=8), A258414 (d=12).
Decimal expansion of Sum_{k>=1} Kronecker(8,k)/k^s: A196525 (s=1), this sequence (s=2), A329715 (s=3).

Programs

  • Mathematica
    RealDigits[Pi^2/(8*Sqrt[2]), 10, 102] // First
  • PARI
    default(realprecision, 100); Pi^2/(8*sqrt(2))

Formula

Equals Pi^2/(8*sqrt(2)).
Equals (zeta(2,1/8) - zeta(2,3/8) - zeta(2,5/8) + zeta(2,7/8))/64, where zeta(s,a) is the Hurwitz zeta function.
Equals (polylog(2,u) - polylog(2,u^3) - polylog(2,-u) + polylog(2,-u^3))/sqrt(8), where u = sqrt(2)/2 + i*sqrt(2)/2 is an 8th primitive root of unity, i = sqrt(-1).
Equals (polygamma(1,1/8) - polygamma(1,3/8) - polygamma(1,5/8) + polygamma(1,7/8))/64.
Equals -Integral_{x=0..oo} log(x)/(x^4 + 1) dx. - Amiram Eldar, Jul 17 2020
Equals 1/(Product_{p prime == 1 or 7 (mod 8)} (1 - 1/p^2) * Product_{p prime == 3 or 5 (mod 8)} (1 + 1/p^2)). - Amiram Eldar, Dec 17 2023

A346260 Decimal expansion of 24611 * Pi^8 / (165150720 * sqrt(2)).

Original entry on oeis.org

9, 9, 9, 8, 4, 5, 2, 1, 5, 4, 7, 9, 2, 2, 5, 6, 0, 0, 4, 6, 2, 8, 7, 9, 8, 8, 9, 4, 7, 7, 1, 8, 5, 2, 0, 7, 7, 8, 4, 9, 4, 8, 3, 3, 3, 9, 8, 9, 4, 8, 1, 7, 9, 6, 9, 9, 4, 0, 6, 5, 5, 7, 0, 0, 7, 9, 7, 5, 5, 5, 3, 4, 6, 3, 8, 9, 9, 4, 2, 5, 3, 6, 8, 9, 7, 1, 5
Offset: 0

Views

Author

Sean A. Irvine, Jul 30 2021

Keywords

Examples

			0.99984521547922560046287988947718520...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (327).

Crossrefs

Programs

  • Mathematica
    RealDigits[24611 * Pi^8 / (165150720 * Sqrt[2]), 10, 120][[1]] (* Amiram Eldar, Jun 20 2023 *)

Formula

Equals 24611 * Pi^8 / (2^19 * 3^2 * 5 * 7 * sqrt(2)).
Equals 1 + Sum_{k>=1} ( (-1)^k/(4*k-1)^8 + (-1)^k/(4*k+1)^8 ).

A346727 Decimal expansion of 361 * Pi^6 / (245760 * sqrt(2)).

Original entry on oeis.org

9, 9, 8, 5, 7, 3, 9, 7, 1, 9, 5, 3, 5, 3, 0, 5, 4, 7, 6, 7, 0, 2, 7, 0, 5, 1, 6, 1, 0, 6, 6, 6, 8, 0, 7, 3, 0, 3, 1, 9, 5, 4, 9, 3, 0, 0, 6, 3, 6, 8, 7, 6, 6, 5, 2, 3, 2, 2, 9, 2, 5, 1, 8, 8, 3, 7, 6, 4, 8, 7, 4, 6, 1, 2, 3, 2, 5, 1, 3, 8, 0, 0, 8, 8, 3, 1, 2
Offset: 0

Views

Author

Sean A. Irvine, Jul 30 2021

Keywords

Comments

Shamos (2011) has incorrect formula 19^2*Pi^4 / (2^14*3*5*sqrt(3)).

Examples

			0.998573971953530547670270516106668073031954930...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (327).

Crossrefs

Programs

  • Mathematica
    RealDigits[361*Pi^6/(245760*Sqrt[2]), 10, 120][[1]] (* Amiram Eldar, Jun 13 2023 *)

Formula

Equals 19^2 * Pi^6 / (2^14 * 3 * 5 * sqrt(2)).
Equals 1 + Sum_{k>=1} ( (-1)^k/(4*k-1)^6 + (-1)^k/(4*k+1)^6 ).
Showing 1-4 of 4 results.