cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A367393 a(n) = A103136(2*n, n), the central terms of the inverse of the Delannoy triangle.

Original entry on oeis.org

1, -3, 22, -194, 1838, -18082, 182054, -1861890, 19258078, -200898626, 2109785654, -22275498434, 236225927182, -2514344180194, 26845804973638, -287403142763522, 3084015902579646, -33160937871888514, 357206218412519510, -3853959574555396290, 41640758821142160110
Offset: 0

Views

Author

Peter Luschny, Nov 16 2023

Keywords

Comments

A combinatorial interpretation in terms of Schroeder paths is given in A103136.

Crossrefs

Cf. A103136.

Programs

  • SageMath
    # Using function A103136.
    def A367393List(size):
        M = A103136(2*size)
        return [M[2*n][n] for n in range(size)]
    print(A367393List(21))

A103137 First column of inverse of Delannoy triangle.

Original entry on oeis.org

1, -1, 2, -6, 22, -90, 394, -1806, 8558, -41586, 206098, -1037718, 5293446, -27297738, 142078746, -745387038, 3937603038, -20927156706, 111818026018, -600318853926, 3236724317174, -17518619320890, 95149655201962, -518431875418926, 2832923350929742, -15521467648875090
Offset: 0

Views

Author

Paul Barry, Jan 24 2005

Keywords

Comments

First column of A103136. The positive sequence has g.f. 1+xS(x). It is the first column of the inverse of the signed Delannoy triangle which has general term T(n,k)=if(k<=n, sum{j=0..k, 2^j*C(n-k,j)C(k,j)}(-1)^(n-k),0).

Crossrefs

A minor variation of A006318.

Programs

  • Mathematica
    CoefficientList[Series[1+x*(1+x-(1+6*x+x^2)^(1/2))/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)

Formula

G.f.: 1-xS(-x), where S(x) is the g.f. of the large Schroeder numbers A006318.
Conjecture: n*a(n) +3*(2*n-3)*a(n-1) +(n-3)*a(n-2)=0. - R. J. Mathar, Nov 26 2012
a(n) ~ (-1)^n * sqrt(3*sqrt(2)-4) * (3+2*sqrt(2))^n / (2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 13 2014

A132372 T(n, k) counts Schroeder n-paths whose ascent starting at the initial vertex has length k. Triangle T(n,k), read by rows.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 10, 5, 1, 22, 38, 22, 7, 1, 90, 158, 98, 38, 9, 1, 394, 698, 450, 194, 58, 11, 1, 1806, 3218, 2126, 978, 334, 82, 13, 1, 8558, 15310, 10286, 4942, 1838, 526, 110, 15, 1, 41586, 74614, 50746, 25150, 9922, 3142, 778, 142, 17, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 20 2007

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows given by [1,1,2,1,2,1,2,1,2,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938 .
Transpose of triangular array A033878. - Michel Marcus, May 02 2015
The triangle is the Riordan square (A321620) of A155069. - Peter Luschny, Feb 01 2020

Examples

			Triangle begins:
      1;
      1,     1;
      2,     3,     1;
      6,    10,     5,     1;
     22,    38,    22,     7,    1;
     90,   158,    98,    38,    9,    1;
    394,   698,   450,   194,   58,   11,   1;
   1806,  3218,  2126,   978,  334,   82,  13,   1;
   8558, 15310, 10286,  4942, 1838,  526, 110,  15,  1;
  41586, 74614, 50746, 25150, 9922, 3142, 778, 142, 17, 1 ; ...
...
The production matrix M begins:
  1, 1
  1, 2, 1
  1, 2, 2, 1
  1, 2, 2, 2, 1
  1, 2, 2, 2, 2, 1
  ...
		

Crossrefs

Cf. A006318, A103136 (signed version), A033878 (transpose).

Programs

  • Maple
    # The function RiordanSquare is defined in A321620.
    RiordanSquare((3-x-sqrt(1-6*x+x^2))/2, 10); # Peter Luschny, Feb 01 2020
    # Alternative:
    A132372 := proc(dim) # dim is the number of rows requested.
    local T, j, A, k, C, m; m := 1;
    T := [seq([seq(0, j = 0..k)], k = 0..dim-1)];
    A := [seq(ifelse(k = 0, 1 + x, 2 - irem(k, 2)), k = 0..dim-2)];
    C := [seq(1, k = 1..dim+1)]; C[1] := 0;
    for k from 0 to dim - 1 do
        for j from k + 1 by -1 to 2 do
            C[j] := C[j-1] + C[j+1] * A[j-1] od;
        T[m] := [seq(coeff(C[2], x, j), j = 0..k)];
        m := m + 1
    od; ListTools:-Flatten(T) end:
    A132372(10);  # Peter Luschny, Nov 16 2023

Formula

Sum_{k, 0<=k<=n} T(n,k) = A006318(n) .
T(n,0) = A155069(n). - Philippe Deléham, Nov 03 2009

A103138 Second column of inverse of Delannoy triangle.

Original entry on oeis.org

0, 1, -3, 10, -38, 158, -698, 3218, -15310, 74614, -370610, 1869338, -9549174, 49302030, -256859754, 1348695330, -7129819038, 37916710374, -202708895330, 1088819681834, -5873129780422, 31800514324606, -172780691083034, 941714095635890, -5147414826440558, 28210011946820438
Offset: 0

Views

Author

Paul Barry, Jan 24 2005

Keywords

Comments

The positive sequence has g.f. (1+x*S(x))*x*S(x).
Second column of A103136.

Examples

			G.f.: A(x) = x - 3*x^2 + 10*x^3 - 38*x^4 + 158*x^5 - 698*x^6 + ... where A( x*(1+x)/(1-x) ) / (1-x) = x.
		

Programs

  • Mathematica
    CoefficientList[Series[(1-x*(1+x-(1+6*x+x^2)^(1/2))/(-2*x))*x*(1+x-(1+6*x+x^2)^(1/2))/(-2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
  • PARI
    {a(n)=if(n==1, 1, -polcoeff(sum(k=1, n-1, a(k)*x^k*(1+x)^k/(1-x+x*O(x^n))^(k+1)), n))} \\ Paul D. Hanna, Aug 06 2013

Formula

G.f.: (1-x*S(-x))*x*S(-x), where S(x) is the g.f. of the large Schroeder numbers A006318.
Conjecture: 2*n*a(n) +(13*n-20)*a(n-1) +(8*n-27)*a(n-2) +(n-5)*a(n-3)=0. - R. J. Mathar, Dec 14 2011
G.f.: x = Sum_{n>=1} a(n) * x^n * (1+x)^n / (1-x)^(n+1). - Paul D. Hanna, Aug 06 2013
G.f. satisfies: A(x*(1+x)/(1-x)) = x - x^2. - Paul D. Hanna, Aug 06 2013
a(n) ~ (-1)^n * (1-2*sqrt(2)) * sqrt(3*sqrt(2)-4) * (3+2*sqrt(2))^n / (2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 01 2014
Showing 1-4 of 4 results.