A367393
a(n) = A103136(2*n, n), the central terms of the inverse of the Delannoy triangle.
Original entry on oeis.org
1, -3, 22, -194, 1838, -18082, 182054, -1861890, 19258078, -200898626, 2109785654, -22275498434, 236225927182, -2514344180194, 26845804973638, -287403142763522, 3084015902579646, -33160937871888514, 357206218412519510, -3853959574555396290, 41640758821142160110
Offset: 0
A103137
First column of inverse of Delannoy triangle.
Original entry on oeis.org
1, -1, 2, -6, 22, -90, 394, -1806, 8558, -41586, 206098, -1037718, 5293446, -27297738, 142078746, -745387038, 3937603038, -20927156706, 111818026018, -600318853926, 3236724317174, -17518619320890, 95149655201962, -518431875418926, 2832923350929742, -15521467648875090
Offset: 0
-
CoefficientList[Series[1+x*(1+x-(1+6*x+x^2)^(1/2))/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
A132372
T(n, k) counts Schroeder n-paths whose ascent starting at the initial vertex has length k. Triangle T(n,k), read by rows.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 6, 10, 5, 1, 22, 38, 22, 7, 1, 90, 158, 98, 38, 9, 1, 394, 698, 450, 194, 58, 11, 1, 1806, 3218, 2126, 978, 334, 82, 13, 1, 8558, 15310, 10286, 4942, 1838, 526, 110, 15, 1, 41586, 74614, 50746, 25150, 9922, 3142, 778, 142, 17, 1
Offset: 0
Triangle begins:
1;
1, 1;
2, 3, 1;
6, 10, 5, 1;
22, 38, 22, 7, 1;
90, 158, 98, 38, 9, 1;
394, 698, 450, 194, 58, 11, 1;
1806, 3218, 2126, 978, 334, 82, 13, 1;
8558, 15310, 10286, 4942, 1838, 526, 110, 15, 1;
41586, 74614, 50746, 25150, 9922, 3142, 778, 142, 17, 1 ; ...
...
The production matrix M begins:
1, 1
1, 2, 1
1, 2, 2, 1
1, 2, 2, 2, 1
1, 2, 2, 2, 2, 1
...
-
# The function RiordanSquare is defined in A321620.
RiordanSquare((3-x-sqrt(1-6*x+x^2))/2, 10); # Peter Luschny, Feb 01 2020
# Alternative:
A132372 := proc(dim) # dim is the number of rows requested.
local T, j, A, k, C, m; m := 1;
T := [seq([seq(0, j = 0..k)], k = 0..dim-1)];
A := [seq(ifelse(k = 0, 1 + x, 2 - irem(k, 2)), k = 0..dim-2)];
C := [seq(1, k = 1..dim+1)]; C[1] := 0;
for k from 0 to dim - 1 do
for j from k + 1 by -1 to 2 do
C[j] := C[j-1] + C[j+1] * A[j-1] od;
T[m] := [seq(coeff(C[2], x, j), j = 0..k)];
m := m + 1
od; ListTools:-Flatten(T) end:
A132372(10); # Peter Luschny, Nov 16 2023
A103138
Second column of inverse of Delannoy triangle.
Original entry on oeis.org
0, 1, -3, 10, -38, 158, -698, 3218, -15310, 74614, -370610, 1869338, -9549174, 49302030, -256859754, 1348695330, -7129819038, 37916710374, -202708895330, 1088819681834, -5873129780422, 31800514324606, -172780691083034, 941714095635890, -5147414826440558, 28210011946820438
Offset: 0
G.f.: A(x) = x - 3*x^2 + 10*x^3 - 38*x^4 + 158*x^5 - 698*x^6 + ... where A( x*(1+x)/(1-x) ) / (1-x) = x.
-
CoefficientList[Series[(1-x*(1+x-(1+6*x+x^2)^(1/2))/(-2*x))*x*(1+x-(1+6*x+x^2)^(1/2))/(-2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 01 2014 *)
-
{a(n)=if(n==1, 1, -polcoeff(sum(k=1, n-1, a(k)*x^k*(1+x)^k/(1-x+x*O(x^n))^(k+1)), n))} \\ Paul D. Hanna, Aug 06 2013
Showing 1-4 of 4 results.
Comments