cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103141 Riordan array (1/(1-x), x*(1 + x + x^2 + x^3)/(1-x)).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 10, 15, 7, 1, 1, 14, 35, 28, 9, 1, 1, 18, 68, 84, 45, 11, 1, 1, 22, 116, 207, 165, 66, 13, 1, 1, 26, 180, 441, 491, 286, 91, 15, 1, 1, 30, 260, 840, 1251, 996, 455, 120, 17, 1, 1, 34, 356, 1464, 2823, 2948, 1814, 680, 153, 19, 1
Offset: 0

Views

Author

Paul Barry, Jan 24 2005

Keywords

Comments

Generalized Pascal matrix: row sums are generalized Pell numbers A103142 and diagonal sums are the Pentanacci numbers A001591(n+4). One of a family of generalized Pascal triangles given by the Riordan arrays (1/(1-x), x*Sum_{j=0..k} x^k/(1-x)). This array has the 'k+2-nacci' numbers as diagonal sums and generalized Pell numbers b(n) = 2b(n-1) + Sum_{j=1..k} b(n-1-j) as row sums. The first two arrays of the family are Pascal's triangle and the Delannoy number triangle.

Examples

			Triangle begins
  1;
  1,  1;
  1,  3,   1;
  1,  6,   5,    1;
  1, 10,  15,    7,    1;
  1, 14,  35,   28,    9,    1;
  1, 18,  68,   84,   45,   11,    1;
  1, 22, 116,  207,  165,   66,   13,   1;
  1, 26, 180,  441,  491,  286,   91,  15,   1;
  1, 30, 260,  840, 1251,  996,  455, 120,  17,  1;
  1, 34, 356, 1464, 2823, 2948, 1814, 680, 153, 19, 1; ...
		

Crossrefs

Cf. A102036.

Programs

  • Mathematica
    T[?Positive, 0] = 1; T[n, n_] = 1; T[n_, k_] /; 0, ] = 0; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 24 2017 *)
  • PARI
    T(n,k)=polcoef(polcoef(1/(1-x-x*y*(1+x+x^2+x^3)) + O(x*x^n), n), k) \\ Andrew Howroyd, Dec 12 2018
    
  • Sage
    def A103141Triangle(dim):
        def B(n): return n if n < 5 else 4
        M = matrix(ZZ, dim, dim)
        for k in (0..dim-1): M[k, 0] = 1
        for k in (1..dim-1):
            for m in (k..dim-1):
                M[m, k] = sum(M[j, k-1]*B(m-j) for j in (k-1..m-1))
        return M
    A103141Triangle(11) # Peter Luschny, Dec 22 2018

Formula

Triangle, read by rows, where the terms are generated by the rule: T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-2, k-1) + T(n-3, k-1) + T(n-4, k-1), with T(0, 0)=1.
G.f.: 1/(1-x-x*y*(1+x+x^2+x^3)). - Vladimir Kruchinin, Apr 21 2015
From Werner Schulte, Dec 07 2018, Dec 12 2018, Dec 13 2018: (Start)
G.f. of column k: Sum_{n>=0} T(n+k,k) * x^n = (1+x+x^2+x^3)^k / (1-x)^(k+1) = (1-x^4)^k / (1-x)^(2*k+1).
Let k >= 0 be some fixed integer and a_k(n) be multiplicative with a_k(p^e) = T(e+k,k) for prime p and e >= 0. Then we have the Dirichlet g.f.: Sum{n>0} a_k(n) / n^s = (zeta(s))^(2*k+1) / (zeta(4*s))^k.
T(n,k) = Sum_{i=0..n-k} binomial(n-i,k) * (Sum_{j=0..i} binomial(k,j) * binomial(3*k-2*j,i-j) * (-2)^j) for 0 <= k <= n (conjectured).
T(n,k) = Sum_{i=0..n-k} binomial(n-i,k) * (Sum_{j=0..floor(i/4)} (-1)^j * binomial(k,j) * binomial(k-1+i-4*j,i-4*j)) for 0 <= k <= n.
T(n,k) = Sum_{i=0..n-k} binomial(n-i,k) * (Sum_{j=0..floor(i/2)} binomial(k,j) * binomial(k,i-2*j)) for 0 <= k <= n. (End)