A103161 GCD of reverse(2^n) and reverse(2^(n+1)), where reverse(k) = A004086(k), the decimal representation of k read backwards.
2, 4, 1, 1, 23, 1, 1, 1, 1, 4201, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 7, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 19, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 34, 1, 1, 1, 7, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
n=10: GCD of backward written powers of 2 is GCD(4201, 8402) = 4201 = a(10).
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
rd[x_] :=FromDigits[Reverse[IntegerDigits[x]]] Table[GCD[rd[2^w], rd[2^(w+1)]], {w, 1, 100}] GCD[IntegerReverse[#[[1]]],IntegerReverse[#[[2]]]]&/@ Partition[ 2^Range[110],2,1] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 24 2017 *)
-
PARI
rev(n) = subst(Polrev(digits(n)), 'x, 10); \\ These two functions from Charles R Greathouse IV, Oct 20 2014 A004094(n) = rev(2^n); A103161(n) = gcd(A004094(n),A004094(1+n)); \\ Antti Karttunen, Dec 07 2017