cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103161 GCD of reverse(2^n) and reverse(2^(n+1)), where reverse(k) = A004086(k), the decimal representation of k read backwards.

Original entry on oeis.org

2, 4, 1, 1, 23, 1, 1, 1, 1, 4201, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 7, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 19, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 34, 1, 1, 1, 7, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Jan 25 2005

Keywords

Examples

			n=10: GCD of backward written powers of 2 is GCD(4201, 8402) = 4201 = a(10).
		

Crossrefs

Programs

  • Mathematica
    rd[x_] :=FromDigits[Reverse[IntegerDigits[x]]] Table[GCD[rd[2^w], rd[2^(w+1)]], {w, 1, 100}]
    GCD[IntegerReverse[#[[1]]],IntegerReverse[#[[2]]]]&/@ Partition[ 2^Range[110],2,1] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 24 2017 *)
  • PARI
    rev(n) = subst(Polrev(digits(n)), 'x, 10); \\ These two functions from Charles R Greathouse IV, Oct 20 2014
    A004094(n) = rev(2^n);
    A103161(n) = gcd(A004094(n),A004094(1+n)); \\ Antti Karttunen, Dec 07 2017

Formula

a(n) = gcd(A004094(n), A004094(n+1)).