A103181 In decimal representation of n: replace all even digits with 0 and all odd digits with 1.
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 0, 1, 0, 1, 0, 1
Offset: 0
Examples
199->'111': a(199)=111; 200->'000': a(200)=0; 299->'011': a(299)=11; 300->'100': a(300)=100.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..9999
Programs
-
Haskell
import Data.List (unfoldr); import Data.Tuple (swap) a103181_list = map a103181 [0..] a103181 n = foldl f 0 $ reverse $ unfoldr g n where f v d = 10 * v + mod d 2 g x = if x == 0 then Nothing else Just $ swap $ divMod x 10 -- Reinhard Zumkeller, Oct 04 2011
-
Mathematica
Table[FromDigits[If[EvenQ[#],0,1]&/@IntegerDigits[n]],{n,0,90}] (* Harvey P. Dale, Nov 08 2022 *)
-
PARI
a(n)=subst(Pol(apply(k->k%2, digits(n))),'x,10) \\ Charles R Greathouse IV, Jul 16 2013
-
Python
def A103181(n): return int(''.join(str(int(d) % 2) for d in str(n))) # Chai Wah Wu, Apr 09 2022
Formula
n = Sum(d(k)*10^k: 0<=d(k)<10) -> a(n) = Sum((d(k) mod 2)*10^k).
a(A014263(n)) = 0. - Reinhard Zumkeller, Oct 04 2011