cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103210 a(n) = (1/n) * Sum_{i=0..n-1} C(n,i)*C(n,i+1)*2^i*3^(n-i), a(0)=1.

Original entry on oeis.org

1, 3, 15, 93, 645, 4791, 37275, 299865, 2474025, 20819307, 178003815, 1541918901, 13503125805, 119352115551, 1063366539315, 9539785668657, 86104685123025, 781343125570515, 7124072211203775, 65233526296899981, 599633539433039445, 5531156299278726663
Offset: 0

Views

Author

Ralf Stephan, Jan 27 2005

Keywords

Comments

The Hankel transform of this sequence is 6^C(n+1,2). - Philippe Deléham, Oct 28 2007
The Hankel transform of the sequence starting 1, 1, 3, 15, ... is A081955. - Paul Barry, Dec 09 2008
Number of Schroeder paths from (0,0) to (0,2n) allowing two colors for the down steps (or alternatively for the rise steps). - Paul Barry, Feb 01 2009
Essentially, reversion of x*(1-2*x)/(1+x). - Paul Barry, Apr 28 2009
a(n) is also the number of infix expressions with n variables and operators +, - and * (or +, * and /) such that there are no redundant parentheses. - Vjeran Crnjak, Apr 25 2020

Crossrefs

Third column of array A103209.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!((1-x-Sqrt(x^2-10*x+1))/(4*x))); // G. C. Greubel, Feb 10 2018
    
  • Maple
    A103210 := proc(n)
        if n = 0 then
            1;
        else
            add(binomial(n,i)*binomial(n,i+1)*2^i*3^(n-i),i=0..n-1)/n ;
        end if;
    end proc: # R. J. Mathar, Feb 10 2015
    A103210_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := 3*a[w-1] + 2*add(a[j]*a[w-j-1], j=1..w-1) od;
    convert(a, list) end: A103210_list(21); # Peter Luschny, Feb 29 2016
  • Mathematica
    CoefficientList[Series[(1-x-Sqrt[x^2-10*x+1])/(4*x), {x, 0, 25}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
    A103210[n_]:= Hypergeometric2F1[-n, n+1, 2, -2]; Table[A103210[n], {n, 0, 25}] (* Peter Luschny, Jan 07 2018 *)
  • PARI
    my(x='x+O('x^25)); Vec((1-x-sqrt(x^2-10*x+1))/(4*x)) \\ G. C. Greubel, Feb 10 2018
    
  • Sage
    [1]+[(3^n/n)*sum( binomial(n,j)*binomial(n,j+1)*(2/3)^j for j in (0..n-1)) for n in (1..25)] # G. C. Greubel, Jun 08 2020

Formula

G.f.: (1 - z - sqrt(1 -10*z +z^2))/(4*z).
a(n) = Sum_{k=0..n} C(n+k, 2k) * 2^k * C(k), C(n) given by A000108. - Paul Barry, May 21 2005
a(n) = Sum_{k=0..n} A060693(n,k)*2^(n-k). - Philippe Deléham, Apr 02 2007
a(0) = 1, a(n) = a(n-1) + 2*Sum_{k=0..n-1} a(k)*a(n-1-k). - Philippe Deléham, Oct 23 2007
a(n) = (3/2)*A107841(n) for n > 0. - Philippe Deléham, Oct 28 2007
G.f.: 1/(1-x-2*x/(1-x-2*x/(1-x-2*x/(1-.... (continued fraction). - Paul Barry, Feb 01 2009
G.f.: 1/(1-3*x-6*x^2/(1-5*x-6*x^2/(1-5*x-6*x^2/(1-... (continued fraction). - Paul Barry, Apr 28 2009
G.f.: 1/(1-3*x/(1-2*x/(1-3*x/(1-2*x/(1-3*x/(1-... (continued fraction). - Paul Barry, May 14 2009
a(n) = Hypergeometric2F1(-n,n+1;2;-2) = Sum_{k=0..n} C(n+k,k) * C(n,k) * 2^k/(k+1). - Paul Barry, Feb 08 2011
G.f.: A(x) = (1-x-(x^2-10*x+1)^(1/2))/(4*x) = 1/(G(0)-x); G(k)= 1 + x - 3*x/G(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Jan 05 2012
D-finite with recurrence: (n+1)*a(n) = 5*(2*n-1)*a(n-1) - (n-2)*a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ sqrt(12+5*sqrt(6))*(5+2*sqrt(6))^n/(4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
G.f. A(x) satisfies: A(x) = (1 + 2*x*A(x)^2) / (1 - x). - Ilya Gutkovskiy, Jun 30 2020

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010