A103226 Moebius function mu(n+ki) defined for the Gaussian integers. The table begins with n=k=0 and is read by antidiagonals.
0, 1, 1, 0, -1, 0, -1, -1, -1, -1, 0, 1, 0, 1, 0, 1, -1, -1, -1, -1, 1, 0, 1, 0, 1, 0, 1, 0, -1, -1, -1, 0, 0, -1, -1, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, -1, 1, -1, -1, 1, -1, 1, 0, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 1, 0, -1, -1, -1, 1, 1, -1, -1, -1, 0, 1, 1, 0, -1, 0
Offset: 1
Examples
The table is symmetric and begins 0 1 0 -1 0 1 0 -1 0 0 0 1 -1 -1 1 -1 1 -1 0 1 1 -1 0 -1 0 -1 0 -1 0 -1 0 1 0 -1 1 -1 1 0 1 1 1 -1 -1 -1 0 -1 0 0 0 -1 0 1 0 -1 0 1 1 -1 1 -1 -1 -1 1 -1 1 0 0 -1 0 1 0 -1 0 1 0 1 0 -1 0 -1 1 1 1 1 1 -1 -1 -1 0 1 0 -1 0 -1 0 -1 0 1 0 0 1 1 -1 -1 1 1 -1 1 0 -1 0 -1 0 -1 0 0 0 -1 0 -1 0
Links
- T. D. Noe, Plot of the Moebius function for Gaussian Integers
- Eric Weisstein's World of Mathematics, Moebius Function
Crossrefs
Cf. A103227 (least k such that (2n-1)+ki is squarefull).
Programs
-
Mathematica
moebius[z_] := Module[{f, mu}, If[z==0, mu=0, If[Abs[z]==1, mu=1, f=FactorInteger[z, GaussianIntegers->True]; If[Abs[f[[1, 1]]]==1, f=Drop[f, 1]]; mu=1; Do[If[f[[i, 2]]==1, mu=-mu, mu=0], {i, Length[f]}]]]; mu]; Flatten[Table[z=(n-k)+k*I; moebius[z], {n, 0, 15}, {k, 0, n}]]
Comments