cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A028412 Rectangular array of numbers Fibonacci(m(n+1))/Fibonacci(m), m >= 1, n >= 0, read by downward antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 4, 8, 3, 1, 7, 17, 21, 5, 1, 11, 48, 72, 55, 8, 1, 18, 122, 329, 305, 144, 13, 1, 29, 323, 1353, 2255, 1292, 377, 21, 1, 47, 842, 5796, 15005, 15456, 5473, 987, 34, 1, 76, 2208, 24447, 104005, 166408, 105937, 23184, 2584, 55, 1, 123, 5777
Offset: 0

Views

Author

Keywords

Comments

Every integer-valued quotient of two Fibonacci numbers is in this array. - Clark Kimberling, Aug 28 2008
Not only does 5 divide row 5, but 50 divides (-5 + row 5), as in A214984. - Clark Kimberling, Nov 02 2012

Examples

			   1   1    1      1       1        1
   1   3    4      7      11       18
   2   8   17     48     122      323
   3  21   72    329    1353     5796
   5  55  305   2255   15005   104005
   8 144 1292  15456  166408  1866294
  13 377 5473 105937 1845493 33489287
  ...
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 142.

Crossrefs

Rows include (essentially) A000032, A047946, A083564, A103226.
Main diagonal is A051294.
Transpose is A214978.

Programs

  • Mathematica
    max = 11; col[m_] := CoefficientList[ Series[ 1/(1 - LucasL[m]*x + (-1)^m*x^2), {x, 0, max}], x]; t = Transpose[ Table[ col[m], {m, 1, max}]] ; Flatten[ Table[ t[[n - m + 1, m]], {n, 1, max }, {m, n, 1, -1}]] (* Jean-François Alcover, Feb 21 2012, after Paul D. Hanna *)
    f[n_] := Fibonacci[n]; t[m_, n_] := f[m*n]/f[n]
    TableForm[Table[t[m, n], {m, 1, 10}, {n, 1, 10}]] (* array *)
    t = Flatten[Table[t[k, n + 1 - k], {n, 1, 120}, {k, 1, n}]] (* sequence *) (* Clark Kimberling, Nov 02 2012 *)
  • PARI
    {T(n,m)=polcoeff(1/(1 - Lucas(m)*x + (-1)^m*x^2 +x*O(x^n)),n)}

Formula

T(n, m) = Sum_{i_1>=0} Sum_{i_2>=0} ... Sum_{i_m>=0} C(n-i_m, i_1)*C(n-i_1, i_2)*C(n-i_2, i_3)*...*C(n-i_{m-1}, i_m).
G.f. for column m >= 1: 1/(1 - Lucas(m)*x + (-1)^m*x^2), where Lucas(m) = A000204(m). - Paul D. Hanna, Jan 28 2012

Extensions

More terms from Erich Friedman, Jun 03 2001
Edited by Ralf Stephan, Feb 03 2005
Better description from Clark Kimberling, Aug 28 2008

A318608 Moebius function mu(n) defined for the Gaussian integers.

Original entry on oeis.org

1, 0, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 0, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0
Offset: 1

Views

Author

Jianing Song, Aug 30 2018

Keywords

Comments

Just like the original Moebius function over the integers, a(n) = 0 if n has a squared Gaussian prime factor, otherwise (-1)^t if n is a product of a Gaussian unit and t distinct Gaussian prime factors.
a(n) = 0 for even n since 2 = -i*(1 + i)^2 contains a squared factor. For rational primes p == 1 (mod 4), p is always factored as (x + y*i)(x - y*i), x + y*i and x - y*i are not associated so a(p) = (-1)*(-1) = 1.
Interestingly, a(n) and A091069(n) have the same absolute value (= |A087003(n)|), since the discriminants of the quadratic fields Q[i] and Q[sqrt(2)] are -4 and 8 respectively, resulting in Q[i] and Q[sqrt(2)] being two of the three quadratic fields with discriminant a power of 2 or negated (the other one being Q[sqrt(-2)] with discriminant -8).

Examples

			a(15) = -1 because 15 is factored as 3*(2 + i)*(2 - i) with three distinct Gaussian prime factors.
a(21) = (-1)*(-1) = 1 because 21 = 3*7 where 3 and 7 are congruent to 3 mod 4 (thus being Gaussian primes).
		

Crossrefs

Absolute values are the same as those of A087003.
First row and column of A103226.
Cf. A101455.
Equivalent of arithmetic functions in the ring of Gaussian integers (the corresponding functions in the ring of integers are in the parentheses): A062327 ("d", A000005), A317797 ("sigma", A000203), A079458 ("phi", A000010), A227334 ("psi", A002322), A086275 ("omega", A001221), A078458 ("Omega", A001222), this sequence ("mu", A008683).
Equivalent in the ring of Eisenstein integers: A319448.
Cf. A091069 (Moebius function over Z[sqrt(2)]).

Programs

  • Mathematica
    f[p_, e_] := If[p == 2 || e > 1, 0, Switch[Mod[p, 4], 1, 1, 3, -1]]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 10 2020 *)
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2||e>=2, r=0);
            if(Mod(p,4)==3&e==1, r*=-1);
        );
        return(r);
    }

Formula

a(n) = 0 if n even or has a square prime factor, otherwise Product_{p divides n} (2 - (p mod 4)) where the product is taken over the primes.
Multiplicative with a(p^e) = 0 if p = 2 or e > 1, a(p) = 1 if p == 1 (mod 4) and -1 if p == 3 (mod 4).
a(n) = 0 if A078458(n) != A086275(n), otherwise (-1)^A086275(n).
a(n) = A103226(n,0) = A103226(0,n).
For squarefree n, a(n) = Kronecker symbol (-4, n) = A101455(n). Also for these n, a(n) = A091069(n) if n even or n == 1 (mod 8), otherwise -A091069(n).

A103227 Least k such that the Gaussian integer (2n-1)+ki is squarefull.

Original entry on oeis.org

7, 4, 10, 1, 0, 2, 9, 5, 6, 8, 3, 7, 0, 0, 2, 8, 6, 5, 9, 2, 1, 1, 0, 4, 0, 7, 4, 10, 1, 12, 2, 0, 5, 6, 8, 3, 11, 0, 11, 3, 0, 6, 5, 6, 2, 10, 1, 10, 4, 0, 7, 4, 10, 1, 12, 2, 9, 5, 0, 8, 0, 3, 0, 11, 3, 8, 6, 0, 4, 2, 12, 1, 10, 0, 7, 7, 0, 10, 1, 12, 2, 9, 5, 6, 0, 0, 11, 0, 11, 3, 5, 6, 5, 9, 0, 6, 1, 10
Offset: 1

Views

Author

T. D. Noe, Jan 26 2005

Keywords

Comments

We treat only the odd case 2n-1 because for the even case we can always take k=0; that is, for n>0, 2n always has a factor of (1+i)^2. Using quadratic residues mod 25, it can be proved that 0<=a(n)<=12 for all n. The plot shows the squarefull Gaussian integers as black squares.

Examples

			a(4)=1 because 7+i has the factor (2+i)^2, but 7+0i has no square factors because it is prime.
		

Crossrefs

Cf. A103226 (Moebius function for Gaussian integers).

Programs

  • Mathematica
    moebius[z_] := Module[{f, mu}, If[z==0, mu=0, If[Abs[z]==1, mu=1, f=FactorInteger[z, GaussianIntegers->True]; If[Abs[f[[1, 1]]]==1, f=Drop[f, 1]]; mu=1; Do[If[f[[i, 2]]==1, mu=-mu, mu=0], {i, Length[f]}]]]; mu]; Table[k=0; While[z=n+k*I; moebiusMuZ[z]!=0, k++ ]; k, {n, 1, 250, 2}]
Showing 1-3 of 3 results.