A103238 Triangular matrix T, read by rows, that satisfies: T^2 + T = SHIFTUP(T), also T^(n+1) + T^n = SHIFTUP(T^n - D*T^(n-1)) for all n, where D is a diagonal matrix with diagonal(D) = diagonal(T) = {1,2,3,...}.
1, 2, 2, 8, 6, 3, 52, 36, 12, 4, 480, 324, 96, 20, 5, 5816, 3888, 1104, 200, 30, 6, 87936, 58536, 16320, 2800, 360, 42, 7, 1601728, 1064016, 294048, 49200, 5940, 588, 56, 8, 34251520, 22728384, 6252288, 1032800, 120960, 11172, 896, 72, 9, 843099616
Offset: 0
Examples
Rows of T begin: [1], [2,2], [8,6,3], [52,36,12,4], [480,324,96,20,5], [5816,3888,1104,200,30,6], [87936,58536,16320,2800,360,42,7], [1601728,1064016,294048,49200,5940,588,56,8],... Rows of T^2 begin: [1], [6,4], [44,30,9], [428,288,84,16], [5336,3564,1008,180,25],... Then T^2 + T = SHIFTUP(T): [2], [8,6], [52,36,12], [480,324,96,20], [5816,3888,1104,200,30],... G.f. for column 0: 1 = (1-2x) + 2*x/(1-x)*(1-2x)(1-3x) + 8*x^2/(1-x)^2*(1-2x)(1-3x)(1-4x) + 52*x^3/(1-x)^3*(1-2x)(1-3x)(1-4x)(1-5x) + ... + T(n,0)*x^n/(1-x)^n*(1-2x)(1-3x)*..*(1-(n+2)x) + ... G.f. for column 1: 2 = 2*(1-3x) + 6*x/(1-x)*(1-3x)(1-4x) + 36*x^2/(1-x)^2*(1-3x)(1-4x)(1-5x) + 324*x^3/(1-x)^3*(1-3x)(1-4x)(1-5x)(1-6x) + ... + T(n,1)*x^(n-1)/(1-x)^(n-1)*(1-3x)(1-4x)*..*(1-(n+2)x) + ...
Programs
-
PARI
/* Using Matrix Diagonalization Formula: */ T(n,k)=my(P,D);D=matrix(n+1,n+1,r,c,if(r==c,r)); P=matrix(n+1,n+1,r,c,if(r>=c,(-1)^(r-c)*(c^2+c)^(r-c)/(r-c)!)); return(if(n
-
PARI
/* Using Generating Function for Columns: */ T(n,k)=if(n
Formula
G.f. for column k: T(k, k) = k+1 = Sum_{n>=k} T(n, k)*x^(n-k)/(1-x)^(n-k) * Product_{j=0..n-k} (1-(j+k+2)*x). Diagonalization: T = P*D*P^-1 where P(r, c) = A103249(r, c)/(r-c)! = (-1)^(r-c)*(c^2+c)^(r-c)/(r-c)! for r>=c>=1 and [P^-1](r, c) = A103244(r, c)/(r-c)! and D is a diagonal matrix = {1, 2, 3, ...}.
Comments