A103239 Column 0 of triangular matrix T = A103238, which satisfies: T^2 + T = SHIFTUP(T) where diagonal(T)={1,2,3,...}.
1, 2, 8, 52, 480, 5816, 87936, 1601728, 34251520, 843099616, 23520367488, 734404134336, 25402332040704, 964965390917120, 39964015456707584, 1793140743838290432, 86691698782589288448, 4494521175128812273152
Offset: 0
Keywords
Examples
1 = (1-2x) + 2*x/(1-x)*(1-2x)(1-3x) + 8*x^2/(1-x)^2*(1-2x)(1-3x)(1-4x) + 52*x^3/(1-x)^3*(1-2x)(1-3x)(1-4x)(1-5x) + ... + a(n)*x^n/(1-x)^n*(1-2x)(1-3x)*..*(1-(n+2)x) + ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..32
Crossrefs
Cf. A103238.
Programs
-
PARI
{a(n)=if(n<0,0,if(n==0,1,polcoeff( 1-sum(k=0,n-1,a(k)*x^k/(1-x)^k*prod(j=0,k,1-(j+2)*x+x*O(x^n))),n)))}
Formula
G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1-x)^n*Product_{j=0..n} (1-(j+2)*x).
Comments