A103246 Numbers y, without duplication, in Pythagorean triples x,y,z where x,y,z are relatively prime composite numbers.
21, 27, 33, 55, 57, 63, 75, 77, 81, 87, 91, 93, 99, 105, 111, 115, 117, 119, 123, 125, 129, 133, 135, 143, 147, 153, 155, 161, 165, 171, 177, 183, 185, 187, 189, 195, 201, 203, 207, 213, 215, 217, 219, 225, 235, 237, 243, 247, 249, 253, 255, 259, 265, 267, 273
Offset: 1
Examples
x=16, y=63, 16^2 + 63^2 = 65^2. 63 is the 6th entry in the list.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- MathForFun, Pythagorean triples
- MathForFun, Pythagorean triples [Cached copy]
- Chenglong Zou, Peter Otzen, Cino Hilliard, Pythagorean triplets, digest of 6 messages in mathfun Yahoo group, Mar 19, 2005.
Programs
-
Maple
N:= 1000: # to get all terms <= N Res:= NULL: for m from 1 to N by 2 do for n from 1 to m-2 by 2 while m*n <= N do if igcd(m,n) > 1 then next fi; if not isprime(m*n) and not isprime((m^2+n^2)/2) then Res:= Res, m*n; fi od od: sort(convert({Res},list)); # Robert Israel, Oct 22 2018
-
PARI
pythtri(n) = { local(a,b,c=0,k,x,y,z,vy,j); w = vector(n*n); for(a=1,n, for(b=1,n, x=2*a*b; y=b^2-a^2; z=b^2+a^2; if(y > 0 &!isprime(x) &!isprime(y) &!isprime(z), if(gcd(x,y)==1&gcd(x,z)==1&gcd(y,z)==1, c++; w[c]=y; ) ) ) ); vy=vector(c); w=vecsort(w); for(j=1,n*n, if(w[j]>0, k++; vy[k]=w[j]; ) ); for(j=1,200, if(vy[j+1]<>vy[j],print1(vy[j]",")) ) }
Comments