cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A103248 Numbers x, without duplication, in Pythagorean triples x,y,z where x,y,z are relatively prime composite numbers.

Original entry on oeis.org

16, 24, 36, 44, 56, 60, 64, 68, 76, 84, 88, 92, 96, 100, 104, 116, 120, 124, 128, 132, 136, 140, 144, 152, 156, 160, 164, 168, 172, 176, 184, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 236, 240, 244, 252, 256, 264, 272, 276, 280, 284, 288, 296, 300, 304
Offset: 1

Views

Author

Cino Hilliard, Mar 19 2005

Keywords

Examples

			x=16, y=63, 16^2 + 63^2 = 65^2. 16 is the 1st entry in the list.
		

Programs

  • PARI
    pythtri(n) = { local(a,b,c=0,k,x,y,z,vx,vy,wx,wyj); wx=wy= vector(n*n); for(a=1,n, for(b=1,n, x=2*a*b; y=b^2-a^2; z=b^2+a^2; if(y > 0 &!isprime(x) &!isprime(y) &!isprime(z), if(gcd(x,y)==1&gcd(x,z)==1&gcd(y,z)==1, c++; wy[c]=y; wx[c]=x; print(x","y","z); \ write("pythtri.txt",x","y","z); ) ) ) ); vy=vx=vector(c); wy=vecsort(wy); wx=vecsort(wx); for(j=1,n*n, if(wx[j]>0, k++; vx[k]=wx[j]; ); ); for(j=1,200, if(vx[j+1]<>vx[j],print1(vx[j]",")) ) }

A103251 Numbers x, without duplication, in Pythagorean triples x,y,z where x,y,z are relatively prime composite numbers and z is a perfect square.

Original entry on oeis.org

24, 96, 120, 216, 240, 336, 384, 480, 600, 720, 840, 840, 864, 960, 1080, 1176, 1320, 1344, 1536, 1920, 1944, 2016, 2160, 2184, 2400, 2520, 2880, 2904, 3000, 3024, 3360, 3360, 3360, 3456, 3696, 3840, 3960, 4056, 4320, 4704, 4896, 5280, 5280, 5376, 5400
Offset: 1

Views

Author

Cino Hilliard, Mar 20 2005

Keywords

Comments

There exists no case in which x or y and z are squares.
Also area A of the right triangles such that A, the sides and the circumradius are integers. - Michel Lagneau, Mar 15 2012

Examples

			x=24, y=7, 24^2 + 7^2 = 25^2. 24 is the 1st entry in the list.
		

Programs

  • PARI
    pythtrisq(n) = { local(a,b,c=0,k,x,y,z,vy,wx,vx,vz,j); w = vector(n*n+1); for(a=1,n, for(b=1,n, x=2*a*b; y=b^2-a^2; z=b^2+a^2; if(y > 0 & issquare(z), c++; w[c]=x; print(x","y","z) ) ) ); vx=vector(c); w=vecsort(w); for(j=1,n*n, if(w[j]>0, k++; vx[k]=w[j]; ) ); for(j=1,200, print1(vx[j]",") ) }

A103249 Numbers y, without duplication, in Pythagorean triples x,y,z where x,y,z are relatively prime composite numbers and x is a perfect square.

Original entry on oeis.org

3, 12, 17, 27, 48, 63, 68, 75, 77, 99, 108, 147, 153, 192, 243, 252, 272, 300, 301, 308, 323, 363, 396, 399, 425, 432, 507, 561, 567, 577, 588, 612, 621, 675, 693, 768, 833, 867, 891, 943, 972, 1008, 1023, 1083, 1088, 1200, 1204, 1232, 1292, 1323, 1377, 1377
Offset: 1

Views

Author

Cino Hilliard, Mar 19 2005

Keywords

Comments

There exists no case in which x and y are both squares.

Examples

			y=3, x=4, 4^2 + 3^2 = 5^2. 3 is the 1st entry in the list.
		

Programs

  • PARI
    pythtrisq(n) = { local(a,b,c=0,k,x,y,z,vy,j); w = vector(n*n+1); for(a=1,n, for(b=1,n, x=2*a*b; y=b^2-a^2; z=b^2+a^2; if(y > 0 & issquare(x), c++; w[c]=y; print(x","y","z) ) ) ); vy=vector(c); w=vecsort(w); for(j=1,n*n, if(w[j]>0, k++; vy[k]=w[j]; ) ); for(j=1,200, print1(vy[j]",") ) }

A103241 Unreduced numerators of the elements T(n,k)/(n-k)!, read by rows, of the triangular matrix P^-1, which is the inverse of the matrix defined by P(n,k) = (-k^3)^(n-k)/(n-k)! for n >= k >= 1.

Original entry on oeis.org

1, 1, 1, 15, 8, 1, 1024, 368, 27, 1, 198581, 53672, 2727, 64, 1, 85102056, 18417792, 710532, 11904, 125, 1, 68999174203, 12448430408, 386023509, 4975936, 38375, 216, 1, 95264160938080, 14734002979456, 381535651512, 3977848832, 23945000
Offset: 1

Views

Author

Paul D. Hanna, Feb 02 2005

Keywords

Comments

Define a triangular matrix P where P(n,k) = (-k^3)^(n-k)/(n-k)!, then M = P*D*P^-1 = A102098 satisfies M^3 = SHIFTUP(M) where D is the diagonal matrix consisting of {1,2,3,...}. The operation SHIFTUP(M) shifts each column of M up 1 row.
Essentially equal to square array A082170 as a triangular matrix. The first column is A082162 (enumerates acyclic automata with 3 inputs).

Examples

			Rows of unreduced fractions T(n,k)/(n-k)! begin:
  [1/0!],
  [1/1!, 1/0!],
  [15/2!, 8/1!, 1/0!],
  [1024/3!, 368/2!, 27/1!, 1/0!],
  [198581/4!, 53672/3!, 2727/2!, 64/1!, 1/0!],
  [85102056/5!, 18417792/4!, 710532/3!, 11904/2!, 125/1!, 1/0!], ...
forming the inverse of matrix P where P(n,k) = A103246(n,k)/(n-k)!:
  [1/0!],
  [-1/1!, 1/0!],
  [1/2!, -8/1!, 1/0!],
  [-1/3!, 64/2!, -27/1!, 1/0!],
  [1/4!, -512/3!, 729/2!, -64/1!, 1/0!], ...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=my(P);if(n>=k&k>=1, P=matrix(n,n,r,c,if(r>=c,(-c^3)^(r-c)/(r-c)!))); return(if(n
    				

Formula

For n > k >= 1: 0 = Sum_{m=k..n} C(n-k, m-k)*(-m^3)^(n-m)*T(m, k).
For n > k >= 1: 0 = Sum_{j=k..n} C(n-k, j-k)*(-k^3)^(j-k)*T(n, j).

A103250 Numbers x, without duplication, in Pythagorean triples x,y,z where x,y,z are relatively prime composite numbers and y is a perfect square.

Original entry on oeis.org

30, 40, 120, 130, 160, 270, 272, 312, 350, 360, 480, 510, 520, 640, 738, 750, 888, 1000, 1080, 1088, 1160, 1170, 1200, 1218, 1248, 1342, 1400, 1440, 1470, 1920, 1960, 2040, 2080, 2080, 2210, 2430, 2448, 2560, 2590, 2808, 2952, 2968, 3000, 3150, 3240, 3250
Offset: 1

Views

Author

Cino Hilliard, Mar 19 2005

Keywords

Comments

The case where x and y are both squares cannot occur.

Examples

			x=30, y=16, 30^2 + 16^2 = 34^2. 30 is the 1st entry in the list.
		

Programs

  • PARI
    pythtrisq(n) = { local(a,b,c=0,k,x,y,z,vy,wx,vx,j); w = vector(n*n+1); for(a=1,n, for(b=1,n, x=2*a*b; y=b^2-a^2; z=b^2+a^2; if(y > 0 & issquare(y), c++; w[c]=x; print(x","y","z) ) ) ); vx=vector(c); w=vecsort(w); for(j=1,n*n, if(w[j]>0, k++; vx[k]=w[j]; ) ); for(j=1,200, print1(vx[j]",") ) }

A103253 Numbers y, without duplication, in Pythagorean triples x,y,z where x,y,z are relatively prime composite numbers and z is a perfect square.

Original entry on oeis.org

7, 28, 41, 63, 112, 119, 161, 164, 175, 239, 252, 343, 369, 448, 476, 527, 567, 644, 656, 700, 721, 847, 956, 959, 1008, 1025, 1071, 1081, 1183, 1241, 1372, 1449, 1476, 1519, 1575, 1792, 1904, 2009, 2023, 2047, 2108, 2268, 2527, 2576, 2624, 2800, 2884, 2975
Offset: 1

Views

Author

Cino Hilliard, Mar 20 2005

Keywords

Comments

The case where x or y and z are squares does not occur.

Examples

			x=24, y=7, 24^2 + 7^2 = 25^2. 7 is the 1st entry in the list.
		

Programs

  • PARI
    pythtrisq(n) = { local(a,b,c=0,k,x,y,z,vy,wx,vx,vz,j); w = vector(n*n+1); for(a=1,n, for(b=1,n, x=2*a*b; y=b^2-a^2; z=b^2+a^2; if(y > 0 & issquare(z), c++; w[c]=y; print(x","y","z) ) ) ); vy=vector(c); w=vecsort(w); for(j=1,n*n, if(w[j]>0, k++; vy[k]=w[j]; ) ); for(j=1,200, print1(vy[j]",") ) }
Showing 1-6 of 6 results.