A099426 Numbers n where n^2 = x^3 + y^3; x,y>0 and gcd(x,y)=1.
3, 228, 671, 1261, 6371, 9765, 35113, 35928, 40380, 41643, 66599, 112245, 124501, 127499, 167160, 191771, 205485, 255720, 297037, 377567, 532392, 546013, 647569, 681285, 812340, 897623, 1043469, 1125683, 1261491, 1431793, 1433040, 1584828, 1783067, 1984009, 2107391, 2372903, 2440893, 2484469, 2548557
Offset: 1
Keywords
Examples
228 is in the sequence because 228^2 = 11^3 + 37^3 and gcd(11, 37) = 1.
Links
- Joerg Arndt and Donovan Johnson, Table of n, a(n) for n = 1..300 (first 55 terms from Joerg Arndt)
Programs
-
Mathematica
n = 10^7; n2 = n^2; x = 1; x3 = x^3; Reap[ While[x3 < n2, y = x + 1; y3 = y^3; While[y3 < n2, If[GCD[x, y] == 1, s = x3 + y3; If[ IntegerQ[r = Sqrt[s]], Print[r]; Sow[r]; Break[]]]; y += 1; y3 = y^3]; x += 1; x3 = x^3]][[2, 1]] // Sort (* Jean-François Alcover, Jan 11 2013, translated from Joerg Arndt's 2nd Pari program *)
-
PARI
is_A099426(n)= { my(n2=n^2, k=1, k3=1, r); while( k3 < n2, if ( ispower(n2-k3, 3, &r), if ( gcd(r,k)==1, return(1) ); ); k+=1; k3=k^3; ); return(0); } for (n=1,10^8, if( is_A099426(n), print1(n,", ")) ); /* Joerg Arndt, Sep 30 2012 */
-
PARI
/* compute all terms below a threshold at once, terms need to be sorted */ { N = 10^7; N2 = N^2; x=1; x3=x^3; while ( x3 < N2, y=x+1; y3=y^3; while ( y3 < N2, if ( gcd(x,y) == 1, s = x3 + y3; if ( issquare(s, &r), print(r); break(); ); ); y+=1; y3 = y^3; ); x+=1; x3 = x^3; );} /* Joerg Arndt, Sep 30 2012 */
-
PARI
for(s=2,1e5,for(x=1,s\2,my(y=s-x);if(gcd(x,y)>1,next); if(issquare(x^3+y^3), print1(s", ")))) \\ Charles R Greathouse IV, Nov 06 2014
Extensions
More terms from Hans Havermann and Bodo Zinser, Oct 20 2004
Comments