cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A099533 Greater of a,b where n^2 = a^3 + b^3; a,b>0 and gcd(a,b)=1. The lesser of a,b is the corresponding term in A099532 and n, which is used to order this sequence, is the corresponding term in A099426.

Original entry on oeis.org

2, 37, 65, 112, 312, 433, 1064, 877, 1177, 1201, 1617, 1969, 2345, 2480, 2543, 3081, 3482, 4019, 4440, 5160, 6337, 6489, 5985, 7729, 8663, 9265, 10274, 8848, 10753, 12688, 11821, 12071, 14345, 13937, 16352, 15520, 17761, 16296, 15962, 21923
Offset: 1

Views

Author

Hans Havermann, Oct 20 2004

Keywords

Examples

			Term #2 is 37 because term #2 of A099426 is 228, 228^2 = 11^3 + 37^3 and 37 > 11.
		

Crossrefs

Cf. A099426, A099532, A282639 (sorted not by n but max(a,b)).

Programs

  • PARI
    for(s=2,1e5,for(x=1,s\2,my(y=s-x);if(gcd(x,y)>1,next); if(issquare(x^3+y^3), print1(y", ")))) \\ Charles R Greathouse IV, Nov 06 2014

A099532 Lesser of a,b where n^2 = a^3 + b^3; a,b > 0 and gcd(a,b)=1. The greater of a,b is the corresponding term in A099533 and n, which is used to order this sequence, is the corresponding term in A099426.

Original entry on oeis.org

1, 11, 56, 57, 217, 242, 305, 851, 23, 122, 592, 1706, 1376, 1001, 2257, 1960, 193, 781, 889, 1729, 3071, 2920, 5896, 1346, 2137, 2184, 1633, 8313, 7034, 1953, 7379, 9097, 6104, 10712, 4097, 12369, 7082, 12265, 13441, 15709, 18314, 5833, 8792, 8929, 3641
Offset: 1

Views

Author

Hans Havermann, Oct 20 2004

Keywords

Examples

			a(2) is 11 because term A099426(2) is 228, 228^2 = 11^3 + 37^3 and 11 < 37.
		

Crossrefs

Programs

  • PARI
    for(s=2,1e5,for(x=1,s\2,my(y=s-x);if(gcd(x,y)>1,next); if(issquare(x^3+y^3), print1(x", ")))) \\ Charles R Greathouse IV, Nov 06 2014

A098970 Numbers k such that (12*k)^2 can be expressed as the sum of the cubes of two distinct primes.

Original entry on oeis.org

19, 67695, 411292, 1134035, 1184876, 2112836, 2455255, 4073384, 11293009, 16171470, 18589912, 34388501, 63609329, 63711615, 117446600, 166530856, 284034387, 449805631, 637548135, 685361103, 783484793, 888180400, 1121365940
Offset: 1

Views

Author

Hugo Pfoertner, Oct 24 2004

Keywords

Comments

This sequence resulted from a discussion on the seqfan mailing list started by Ed Pegg Jr.
Dean Hickerson and Paul C. Leopardi have shown that if a and b are distinct primes with a^3 + b^3 = c^2, then c must be divisible by 12.
The numbers 12*k form a subsequence of A099426. - Hans Havermann, Oct 24 2004
All terms of this sequence are of the form M*N*(3*M^4+N^4)/2 for some pair M,N of relatively prime positive integers of opposite parity. For each n, A099806(n)^3 + A099807(n)^3 = (12*A098970(n))^2. - James R. Buddenhagen, Oct 26 2004

Crossrefs

Extensions

More terms from James R. Buddenhagen, Oct 26 2004

A282639 Greater value of a coprime pair (x,y) satisfying x^3+y^3=z^2.

Original entry on oeis.org

2, 37, 65, 112, 312, 433, 877, 1064, 1177, 1201, 1617, 1969, 2345, 2480, 2543, 3081, 3482, 4019, 4440, 5160, 5985, 6337, 6489, 7729, 8663, 8848, 9265, 10274, 10753, 11821, 12071, 12688, 13937, 14345, 15520, 15962, 16296, 16352, 17761, 21923, 22753, 26208
Offset: 1

Views

Author

R. J. Mathar, Feb 20 2017

Keywords

Comments

A permutation of A099533 sorted by increasing y. 1<=x<=y, GCD(x,y)=1.

Examples

			(x,y,z) = (11,37,228), (56,65,671), (57,112,1261), (217,312,6371), (242,433,9765), (851,877,35928), (305,1064,35113), (23,1177,40380), (122,1201,41643), (592,1617,66599), (1706,1969,112245), (1376,2345,124501), (1001,2480,127499), (2257,2543,167160), (1960,3081,191771)... - _R. J. Mathar_, Jan 22 2025
		

Crossrefs

Cf. A099533, A106322, A099426 (values of z). Subsequence of A320662.

Programs

  • Maple
    A282639 := proc(n)
        option remember ;
        local x,y ;
        if n =1 then
            2
        else
            for y from procname(n-1)+1 do
                for x from 1 to y do
                    if igcd(x,y) = 1 then
                        if issqr(x^3+y^3) then
                            return y;
                        end if;
                    end if;
                end do:
            end do:
        end if;
    end proc:
    seq(A282639(n),n=1..17) ; # R. J. Mathar, Jan 22 2025

A103255 Integers x > 0 such that x^3 + y^3 = z^2 for some y > 0, z > 0, and gcd(x,y) = 1.

Original entry on oeis.org

1, 2, 11, 23, 37, 56, 57, 65, 112, 122, 193, 217, 242, 305, 312, 433, 592, 781, 851, 877, 889, 913, 1001, 1064, 1177, 1201, 1346, 1376, 1617, 1633, 1706, 1729, 1801, 1953, 1960, 1969, 2137, 2162, 2184, 2257, 2345, 2480, 2543, 2920, 3071, 3081, 3482, 3641, 3889, 4019
Offset: 1

Views

Author

Cino Hilliard, Mar 20 2005

Keywords

Examples

			x=11, y=37, 11^3 + 37^3 = 228^2. 11 is the third entry in the list.
The pairs [x,y] = [a(n),a(?)] for the first few terms are [1, 2], [2, 1], [11, 37], [23, 1177], [37, 11], [56, 65], [57, 112], [65, 56], [112, 57], [122, 1201], [193, 3482], [217, 312], [242, 433]. [_Joerg Arndt_, Sep 30 2012]
		

Crossrefs

Cf. A099426 (values of z).

Programs

  • Magma
    [ k : k in [1..100] | exists{P : P in IntegralPoints(EllipticCurve([0,k^3])) | P[1] gt 0 and P[2] ne 0 and GCD(Integers()!P[1],k) eq 1} ]; // Geoff Bailey
    
  • Mathematica
    (* This program uses z-values from A099426 b-file. To get 50 terms, the first 200 z-values suffice, the result being the same with the whole b-file of 300 z-values. *)
    terms = 50;
    zz = Import["https://oeis.org/A099426/b099426.txt", "Table"][[1 ;; 4 terms, 2]];
    r[z_] := {x, y, z} /. ToRules[Reduce[GCD[x, y] == 1 && 0Jean-François Alcover, Jun 13 2019 *)
  • PARI
    is_A103255(x, lim)=
    { /* Warning: just how big lim has to be is unclear */
        my(x3=x^3);
        for (y=1, lim,
            if ( gcd(x,y) != 1, next() );
            if ( issquare(x3+y^3), return(1) );
        );
        return(0);
    }
    /* Using lim=10^6 reproduces all terms <= 1000: */
    for (n=1,1000, if( is_A103255(n, 10^6), print1(n,", ")) );
    /* Joerg Arndt, Sep 30 2012 */
  • Sage
    # apparently inefficient as of version 5.2
    def is_A103255(n):
        E = EllipticCurve([0, n^3])
        E.gens(descent_second_limit=16);
        for p in E.integral_points():
            if p[0] > 0 and p[1] > 0 and gcd(p[1], n) == 1:
                return true
        return false
    [n for n in (1..60) if is_A103255(n)]
    # Peter Luschny, Sep 29 2012
    

Extensions

Recomputed and extended by Geoff Bailey (geoff(AT)maths.usyd.edu.au) using MAGMA, Jan 28 2007
a(9)-a(10) from Jonathan Vos Post, May 27 2007
a(11)-a(16) from Vincenzo Librandi, Dec 21 2010
a(17)-a(22) from Joerg Arndt, Sep 30 2012
a(23)-a(50) from Jean-François Alcover, Jun 12 2019

A251781 Numbers whose square is the sum of two distinct positive cubes.

Original entry on oeis.org

3, 24, 81, 98, 168, 192, 228, 312, 375, 525, 588, 648, 671, 784, 847, 1014, 1029, 1183, 1225, 1261, 1323, 1344, 1536, 1824, 2187, 2496, 2646, 2888, 3000, 3993, 4200, 4225, 4536, 4563, 4644, 4704, 5184, 5368, 6156, 6272, 6292, 6371, 6591, 6696, 6776, 6877, 8112
Offset: 1

Views

Author

Daniel Arribas, Dec 08 2014

Keywords

Comments

This list contains A117642 (if n=3*k^3, then n^2 = 9*k^6 = 8*k^6 + k^6 = (2*k^2)^3 + (k^2)^3). (Old comment rewritten as suggested by Michel Marcus, Dec 10 2014.)
Subsequence of A050801 and A217248. - Wolfdieter Lang, Jan 04 2015

Examples

			3^2 = 1^3 + 2^3; 24^2 = 4^3 + 8^3.
		

Crossrefs

Cf. A024670, A117642, A050801, A217248, A099426 (coprime positive cubes).

Programs

  • Python
    def aupto(limit):
      c = [i**3 for i in range(1, int(limit**(2/3))+2) if i**3 <= limit**2]
      cc = [c1 + c2 for i, c1 in enumerate(c) for c2 in c[i+1:]]
      return sorted([i for i in range(1, limit+1) if i*i in cc])
    print(aupto(8122)) # Michael S. Branicky, Mar 24 2021
  • Sage
    L = []
    for k in range(1,10^3):
        for l in range(k + 1,10^3):
            if is_square(k**3+l**3):
                L.append(sqrt(k**3+l**3))
    

A183150 Semiprimes s such that s^2 is expressible as the sum of two positive cubes.

Original entry on oeis.org

4, 671, 1261, 6371, 127499, 377567, 897623, 1984009, 4266107, 4870741, 4974061, 5491823, 24923137, 26784757, 28192247, 33601933, 36295069, 44091347, 44988481, 61717319, 95327051, 97587433, 99712367, 142798573, 149982097, 193405967
Offset: 1

Views

Author

Jonathan Vos Post, Feb 05 2011

Keywords

Comments

Contains 4 and a subset of A099426.
If s=p*q for primes p < q, then (4*q^2-p^4)/3 is a square. Furthermore, q/p^2 = (m^4 + 6*m^3*n + 18*m^2*n^2 + 18*m*n^3 + 9*n^4)/(m^2 - 3*n^2)^2 for some integers m,n. The underlying identity (up to a common factor) is ( (m^4 + 6*m^3*n + 18*m^2*n^2 + 18*m*n^3 + 9*n^4)*(m^2 - 3*n^2) )^2 = ( (m+3*n)*(m+n)*(m^2+3*n^2) )^3 + ( -4*m*n*(m^2+3*m*n+3*n^2) )^3. - Max Alekseyev, Jun 16 2011

Examples

			a(1) = 4 = 2*2 because 4^2 = 16 = 2^3 + 2^3 . a(2) = 671 = 11 * 61 and 56^3 + 65^3 = 671^2 = 450241. a(3) = 1261 = 13 * 97 and 1261^2 = 57^3 + 112^3. a(6) = 897623 = 107 * 8389.
		

Programs

  • Mathematica
    Select[Range[194*10^6],PrimeOmega[#]==2&&Length[ PowersRepresentations[ #^2,2,3]]>0&] (* The program takes a long time to run. *) (* Harvey P. Dale, Feb 27 2016 *)

Formula

A001358 INTERSECTION A050801.

Extensions

a(9)-a(26) from Donovan Johnson, Feb 11 2011
Showing 1-7 of 7 results.