cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A099426 Numbers n where n^2 = x^3 + y^3; x,y>0 and gcd(x,y)=1.

Original entry on oeis.org

3, 228, 671, 1261, 6371, 9765, 35113, 35928, 40380, 41643, 66599, 112245, 124501, 127499, 167160, 191771, 205485, 255720, 297037, 377567, 532392, 546013, 647569, 681285, 812340, 897623, 1043469, 1125683, 1261491, 1431793, 1433040, 1584828, 1783067, 1984009, 2107391, 2372903, 2440893, 2484469, 2548557
Offset: 1

Views

Author

Hans Havermann, Oct 15 2004

Keywords

Comments

Based on an observation of Ed Pegg Jr, who supplied terms a(2)-a(6) and a(8).

Examples

			228 is in the sequence because 228^2 = 11^3 + 37^3 and gcd(11, 37) = 1.
		

Crossrefs

Cf. A099532, A099533, A103255 (min(x,y), sorted), A282639 (max(x,y)).

Programs

  • Mathematica
    n = 10^7; n2 = n^2; x = 1; x3 = x^3; Reap[ While[x3 < n2, y = x + 1; y3 = y^3; While[y3 < n2, If[GCD[x, y] == 1, s = x3 + y3; If[ IntegerQ[r = Sqrt[s]], Print[r]; Sow[r]; Break[]]]; y += 1; y3 = y^3]; x += 1; x3 = x^3]][[2, 1]] // Sort (* Jean-François Alcover, Jan 11 2013, translated from Joerg Arndt's 2nd Pari program *)
  • PARI
    is_A099426(n)=
    {
        my(n2=n^2, k=1, k3=1, r);
        while( k3 < n2,
            if ( ispower(n2-k3, 3, &r),
                if ( gcd(r,k)==1, return(1) );
            );
            k+=1;  k3=k^3;
        );
        return(0);
    }
    for (n=1,10^8, if( is_A099426(n), print1(n,", ")) );
    /* Joerg Arndt, Sep 30 2012 */
    
  • PARI
    /* compute all terms below a threshold at once, terms need to be sorted */
    { N = 10^7; N2 = N^2;
    x=1; x3=x^3;
    while ( x3 < N2,
        y=x+1; y3=y^3;
        while ( y3 < N2,
            if ( gcd(x,y) == 1,
                s = x3 + y3;
                if ( issquare(s, &r), print(r); break(); );
            );
            y+=1;  y3 = y^3;
        );
        x+=1;  x3 = x^3;
    );}
    /* Joerg Arndt, Sep 30 2012 */
    
  • PARI
    for(s=2,1e5,for(x=1,s\2,my(y=s-x);if(gcd(x,y)>1,next); if(issquare(x^3+y^3), print1(s", ")))) \\ Charles R Greathouse IV, Nov 06 2014

Extensions

More terms from Hans Havermann and Bodo Zinser, Oct 20 2004

A099533 Greater of a,b where n^2 = a^3 + b^3; a,b>0 and gcd(a,b)=1. The lesser of a,b is the corresponding term in A099532 and n, which is used to order this sequence, is the corresponding term in A099426.

Original entry on oeis.org

2, 37, 65, 112, 312, 433, 1064, 877, 1177, 1201, 1617, 1969, 2345, 2480, 2543, 3081, 3482, 4019, 4440, 5160, 6337, 6489, 5985, 7729, 8663, 9265, 10274, 8848, 10753, 12688, 11821, 12071, 14345, 13937, 16352, 15520, 17761, 16296, 15962, 21923
Offset: 1

Views

Author

Hans Havermann, Oct 20 2004

Keywords

Examples

			Term #2 is 37 because term #2 of A099426 is 228, 228^2 = 11^3 + 37^3 and 37 > 11.
		

Crossrefs

Cf. A099426, A099532, A282639 (sorted not by n but max(a,b)).

Programs

  • PARI
    for(s=2,1e5,for(x=1,s\2,my(y=s-x);if(gcd(x,y)>1,next); if(issquare(x^3+y^3), print1(y", ")))) \\ Charles R Greathouse IV, Nov 06 2014

A320662 Numbers k for which there are numbers 0 < m <= k such that k^3 + m^3 is a square.

Original entry on oeis.org

2, 8, 18, 21, 26, 32, 37, 46, 50, 65, 70, 72, 84, 88, 91, 98, 104, 105, 112, 128, 148, 162, 184, 189, 190, 200, 234, 242, 249, 260, 273, 280, 288, 312, 330, 333, 336, 338, 345, 352, 354, 364, 371, 392, 407, 414, 416, 420
Offset: 1

Views

Author

Marius A. Burtea, Oct 18 2018

Keywords

Comments

The sequence is infinite since if u is in the sequence then so is u*t^2, t, u >= 1. - Marius A. Burtea and David A. Corneth, Oct 23 2018
For the subsequence k= 8, 18, 32, 50,65, 72, 98, 104, 105,... two or more m exist satisfying the equation. - R. J. Mathar, Jan 22 2025

Examples

			8^3 + 4^3 = 512 + 64 = 576 = 24^2, so 8 is part of the sequence.
18^3 + 9^3 = 5832 + 729 = 6561 = 81^2, so 18 is part of the sequence.
91^3 + 65^3 = 753571 + 274625 = 1028196 = 1014^2, so 91 is part of the sequence.
7^3 + 0^3 = 343 + 0 = 343, 7^3 + 1^3 = 343 + 1 = 344, 7^3 + 2^3 = 343 + 8 = 351,7^3 + 4^3 = 343 + 64 = 407, 7^3 + 5^3 = 343 + 125 = 468, 7^3 + 6^3 = 343 + 216 = 559 and 7^3 + 7^3 = 343 + 343 = 686. Numbers 343, 344, 351, 407, 468, 559 and 686 are not squares, so 7 is not part of the sequence.
		

Crossrefs

Cf. A003325, A003997, A004999, A024670, A086119, A282639 (subsequence for coprime m,k), A050801 (bases of the squares).

Programs

  • Maple
    A320662 := proc(n)
        option remember ;
        local m,k ;
        if n =1 then
            2
        else
            for k from procname(n-1)+1 do
                for m from 1 to k do
                    if issqr(k^3+m^3) then
                        return k ;
                    end if;
                end do:
            end do:
        end if;
    end proc:
    seq(A320662(n),n=1..40) ; # R. J. Mathar, Jan 22 2025
  • Mathematica
    Select[Range@ 420, AnyTrue[Range[#1]^3 + #2, IntegerQ@ Sqrt@ # &] & @@ {#, #^3} &] (* Michael De Vlieger, Nov 05 2018 *)
  • PARI
    is(n) = for(m=1, n, if(issquare(n^3+m^3), return(1))); 0 \\ Felix Fröhlich, Oct 22 2018
Showing 1-3 of 3 results.