cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A099532 Lesser of a,b where n^2 = a^3 + b^3; a,b > 0 and gcd(a,b)=1. The greater of a,b is the corresponding term in A099533 and n, which is used to order this sequence, is the corresponding term in A099426.

Original entry on oeis.org

1, 11, 56, 57, 217, 242, 305, 851, 23, 122, 592, 1706, 1376, 1001, 2257, 1960, 193, 781, 889, 1729, 3071, 2920, 5896, 1346, 2137, 2184, 1633, 8313, 7034, 1953, 7379, 9097, 6104, 10712, 4097, 12369, 7082, 12265, 13441, 15709, 18314, 5833, 8792, 8929, 3641
Offset: 1

Views

Author

Hans Havermann, Oct 20 2004

Keywords

Examples

			a(2) is 11 because term A099426(2) is 228, 228^2 = 11^3 + 37^3 and 11 < 37.
		

Crossrefs

Programs

  • PARI
    for(s=2,1e5,for(x=1,s\2,my(y=s-x);if(gcd(x,y)>1,next); if(issquare(x^3+y^3), print1(x", ")))) \\ Charles R Greathouse IV, Nov 06 2014

A099426 Numbers n where n^2 = x^3 + y^3; x,y>0 and gcd(x,y)=1.

Original entry on oeis.org

3, 228, 671, 1261, 6371, 9765, 35113, 35928, 40380, 41643, 66599, 112245, 124501, 127499, 167160, 191771, 205485, 255720, 297037, 377567, 532392, 546013, 647569, 681285, 812340, 897623, 1043469, 1125683, 1261491, 1431793, 1433040, 1584828, 1783067, 1984009, 2107391, 2372903, 2440893, 2484469, 2548557
Offset: 1

Views

Author

Hans Havermann, Oct 15 2004

Keywords

Comments

Based on an observation of Ed Pegg Jr, who supplied terms a(2)-a(6) and a(8).

Examples

			228 is in the sequence because 228^2 = 11^3 + 37^3 and gcd(11, 37) = 1.
		

Crossrefs

Cf. A099532, A099533, A103255 (min(x,y), sorted), A282639 (max(x,y)).

Programs

  • Mathematica
    n = 10^7; n2 = n^2; x = 1; x3 = x^3; Reap[ While[x3 < n2, y = x + 1; y3 = y^3; While[y3 < n2, If[GCD[x, y] == 1, s = x3 + y3; If[ IntegerQ[r = Sqrt[s]], Print[r]; Sow[r]; Break[]]]; y += 1; y3 = y^3]; x += 1; x3 = x^3]][[2, 1]] // Sort (* Jean-François Alcover, Jan 11 2013, translated from Joerg Arndt's 2nd Pari program *)
  • PARI
    is_A099426(n)=
    {
        my(n2=n^2, k=1, k3=1, r);
        while( k3 < n2,
            if ( ispower(n2-k3, 3, &r),
                if ( gcd(r,k)==1, return(1) );
            );
            k+=1;  k3=k^3;
        );
        return(0);
    }
    for (n=1,10^8, if( is_A099426(n), print1(n,", ")) );
    /* Joerg Arndt, Sep 30 2012 */
    
  • PARI
    /* compute all terms below a threshold at once, terms need to be sorted */
    { N = 10^7; N2 = N^2;
    x=1; x3=x^3;
    while ( x3 < N2,
        y=x+1; y3=y^3;
        while ( y3 < N2,
            if ( gcd(x,y) == 1,
                s = x3 + y3;
                if ( issquare(s, &r), print(r); break(); );
            );
            y+=1;  y3 = y^3;
        );
        x+=1;  x3 = x^3;
    );}
    /* Joerg Arndt, Sep 30 2012 */
    
  • PARI
    for(s=2,1e5,for(x=1,s\2,my(y=s-x);if(gcd(x,y)>1,next); if(issquare(x^3+y^3), print1(s", ")))) \\ Charles R Greathouse IV, Nov 06 2014

Extensions

More terms from Hans Havermann and Bodo Zinser, Oct 20 2004

A282639 Greater value of a coprime pair (x,y) satisfying x^3+y^3=z^2.

Original entry on oeis.org

2, 37, 65, 112, 312, 433, 877, 1064, 1177, 1201, 1617, 1969, 2345, 2480, 2543, 3081, 3482, 4019, 4440, 5160, 5985, 6337, 6489, 7729, 8663, 8848, 9265, 10274, 10753, 11821, 12071, 12688, 13937, 14345, 15520, 15962, 16296, 16352, 17761, 21923, 22753, 26208
Offset: 1

Views

Author

R. J. Mathar, Feb 20 2017

Keywords

Comments

A permutation of A099533 sorted by increasing y. 1<=x<=y, GCD(x,y)=1.

Examples

			(x,y,z) = (11,37,228), (56,65,671), (57,112,1261), (217,312,6371), (242,433,9765), (851,877,35928), (305,1064,35113), (23,1177,40380), (122,1201,41643), (592,1617,66599), (1706,1969,112245), (1376,2345,124501), (1001,2480,127499), (2257,2543,167160), (1960,3081,191771)... - _R. J. Mathar_, Jan 22 2025
		

Crossrefs

Cf. A099533, A106322, A099426 (values of z). Subsequence of A320662.

Programs

  • Maple
    A282639 := proc(n)
        option remember ;
        local x,y ;
        if n =1 then
            2
        else
            for y from procname(n-1)+1 do
                for x from 1 to y do
                    if igcd(x,y) = 1 then
                        if issqr(x^3+y^3) then
                            return y;
                        end if;
                    end if;
                end do:
            end do:
        end if;
    end proc:
    seq(A282639(n),n=1..17) ; # R. J. Mathar, Jan 22 2025

A282095 Larger member of a coprime pair (x,y) which solves x^2 + y^2 = z^3 with positive x, y and z.

Original entry on oeis.org

11, 46, 52, 117, 142, 198, 236, 286, 415, 488, 524, 549, 621, 666, 835, 873, 908, 970, 1001, 1199, 1388, 1432, 1692, 1757, 1962, 1964, 1971, 2035, 2041, 2366, 2392, 2630, 2655, 2681, 2702, 2815, 2826, 3195, 3421, 3544, 3664, 3715, 4048, 4070, 4097, 4356
Offset: 1

Views

Author

R. J. Mathar, Feb 06 2017

Keywords

Comments

If x and y are coprime, so obviously are also (x,z) and (y,z).
The ordered values of the bases of the cubes, z, are a subsequence of (and conjecturally the same as) A008846.
For production purposes we advice to use the parametrized representations (see references).

Examples

			2^2 + 11^2 = 5^3, so 11 is in the sequence.
9^2 + 46^2 = 13^3, so 46 is in the sequence.
47^2 + 52^2 = 17^3, so 52 is in the sequence.
44^2 + 117^2 = 25^2, so 117 is in the sequence.
		

Crossrefs

Subsequence of A282093. Cf. A099533.

Programs

  • Maple
    # slow version for demonstration only.
    isA282095 := proc(y)
        local x,z3 ;
        for x from 1 to y do
            if igcd(x,y) = 1 then
                z3 := x^2+y^2 ;
                if isA000578(z3) then
                    return true ;
                end if;
            end if;
        end do:
        return false ;
    end proc:
    for y from 1 do
        if isA282095(y) then
            printf("%d,\n",y) ;
        end if;
    end do:
  • Mathematica
    okQ[y_] := Module[{x, z3}, For[x=1, xJean-François Alcover, Dec 04 2017, after R. J. Mathar *)

Formula

{y: x^2 + y^2 = z^3; gcd(x,y) = 1; 1 <= x <= y; x, y, z in N}
Showing 1-4 of 4 results.