A251781 Numbers whose square is the sum of two distinct positive cubes.
3, 24, 81, 98, 168, 192, 228, 312, 375, 525, 588, 648, 671, 784, 847, 1014, 1029, 1183, 1225, 1261, 1323, 1344, 1536, 1824, 2187, 2496, 2646, 2888, 3000, 3993, 4200, 4225, 4536, 4563, 4644, 4704, 5184, 5368, 6156, 6272, 6292, 6371, 6591, 6696, 6776, 6877, 8112
Offset: 1
Keywords
Examples
3^2 = 1^3 + 2^3; 24^2 = 4^3 + 8^3.
Links
- Daniel Arribas, Table of n, a(n) for n = 1..575
Programs
-
Python
def aupto(limit): c = [i**3 for i in range(1, int(limit**(2/3))+2) if i**3 <= limit**2] cc = [c1 + c2 for i, c1 in enumerate(c) for c2 in c[i+1:]] return sorted([i for i in range(1, limit+1) if i*i in cc]) print(aupto(8122)) # Michael S. Branicky, Mar 24 2021
-
Sage
L = [] for k in range(1,10^3): for l in range(k + 1,10^3): if is_square(k**3+l**3): L.append(sqrt(k**3+l**3))
Comments