A058539 McKay-Thompson series of class 18d for the Monster group.
1, 4, 10, 20, 35, 60, 100, 164, 261, 400, 600, 884, 1291, 1864, 2656, 3740, 5205, 7184, 9842, 13388, 18082, 24244, 32300, 42784, 56378, 73928, 96466, 125284, 161981, 208568, 267524, 341880, 435343, 552424, 698666, 880848, 1107229, 1387804, 1734624, 2162248
Offset: 0
Keywords
Examples
1 + 4*x + 10*x^2 + 20*x^3 + 35*x^4 + 60*x^5 + 100*x^6 + 164*x^7 + ... T18d = 1/q + 4*q^2 + 10*q^5 + 20*q^8 + 35*q^11 + 60*q^14 + 100*q^17 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Index entries for McKay-Thompson series for Monster simple group
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[((1+x^(3*k-1))*(1+x^(3*k-2)))^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *) QP = QPochhammer; s = (QP[q^2]*(QP[q^3]/(QP[q]*QP[q^6])))^4 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)))^4, n))} /* Michael Somos, Mar 04 2012 */
Formula
Expansion of (chi(-x^3) / chi(-x))^4 in powers of x where chi() is a Ramanujan theta function.
Expansion of q^(1/3) * c(q) * b(q^2) / (b(q) * c(q^2)) in powers of q where b(), c() are cubic AGM theta functions.
Expansion of q^(1/3) * (eta(q^2) * eta(q^3) / (eta(q) * eta(q^6)))^4 in powers of q.
Given g.f. A(x), then B(x) = A(x^3) / x satisfies 0 = f(B(x), B(x^2)) where f(u, v) = 8 * (u * v)^2 - (1 + u * v) * (u^2 - v) * (v^2 - u).
Given g.f. A(x), then B(x) = A(x^3) / x satisfies 0 = f(B(x), B(x^2)) where f(u, v) = 9 * (u * v)^2 - (u - v^2 + u^2*v) * (v - u^2 + u*v^2).
Given g.f. A(x), then B(x) = A(x^3) / x satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = 8 * u * v * w - (u^2 - v) * (w^2 - v).
Given g.f. A(x), then B(x) = A(x^3) / x satisfies 0 = f(B(x), B(x^5)) where f(u, v) = u*v * (1 + 25 * u*v + u^2*v^2)^2 - (u^3 + v^3 + 10 * u*v * (1 + u*v))^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (54 t)) = f(t) where q = exp(2 Pi i t).
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (2^(3/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Sep 10 2015
Comments