cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A317197 a(n) is the concatenation of A103269(n-i) for i = 0,1,2,...,n-1.

Original entry on oeis.org

1, 121, 1213121, 12131211213121, 121312112131212131211213121, 121312112131212131211213121312112131212131211213121, 12131211213121213121121312131211213121213121121312112131212131211213121312112131212131211213121
Offset: 1

Views

Author

N. J. A. Sloane, Aug 05 2018

Keywords

Comments

a(n) is a palindrome.
A027084 gives lengths of these words.

Examples

			a(3) = 1213.12.1 = 1213121.
		

Crossrefs

A317199 Bo Tan et al.'s string E_n, defined by A_n = A103269(n) = D_{n-1}E_n = A317197(n-1)E_n for n >= 2, with E_1 = 12.

Original entry on oeis.org

12, 213, 3121, 121312, 2131211213
Offset: 1

Views

Author

N. J. A. Sloane, Aug 05 2018

Keywords

Comments

See A317200 for length of E_n.

Examples

			A_4 = 1213121121312, D_3 = 1213121, so E_4 = 121312.
		

Crossrefs

See A317201 for the reversals of these words.

A092782 The ternary tribonacci word; also a Rauzy fractal sequence: fixed point of the morphism 1 -> 12, 2 -> 13, 3 -> 1, starting from a(1) = 1.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 3
Offset: 1

Views

Author

Philippe Deléham, Apr 23 2004

Keywords

Comments

See A080843 for the {0,1,2} version, which in a sense is the most basic version.
See also A103269 for another version with further references and comments.
Also called a tribonacci word. In the limit the ratios #1's : #2's : #3's are t^2 : t : 1 where t is the tribonacci constant 1.839286755... (A058265). - Frank M Jackson, Mar 29 2018
a(n)-1 is the number of trailing 0's in the maximal tribonacci representation of n (A352103). - Amiram Eldar, Feb 29 2024

Examples

			From _Joerg Arndt_, Sep 14 2013: (Start)
The first few steps of the substitution are
Start: 1
Maps:
  1 --> 12
  2 --> 13
  3 --> 1
-------------
0:   (#=1)
  1
1:   (#=2)
  12
2:   (#=4)
  1213
3:   (#=7)
  1213121
4:   (#=13)
  1213121121312
5:   (#=24)
  121312112131212131211213
6:   (#=44)
  12131211213121213121121312131211213121213121
7:   (#=81)
  121312112131212131211213121312112131212131211213121121312121312112131213121121312
(End)
		

References

  • This entry has a fairly complete list of references and links concerning the ternary tribonacci word. - N. J. A. Sloane, Aug 17 2018
  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 246.
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

Crossrefs

See A080843 for a {0,1,2} version.
First differences: A317950.

Programs

  • Maple
    f(1):= (1, 2): f(2):= (1, 3): f(3):= (1): A:= [1]:
    for i from 1 to 16 do A:= map(f, A) od:
    A; # 19513 terms of A092782; A103269; from N. J. A. Sloane, Aug 06 2018
  • Mathematica
    Nest[ Flatten[# /. {1 -> {1, 2}, 2 -> {1, 3}, 3 -> 1}] &, {1}, 8] (* Robert G. Wilson v, Mar 04 2005 and updated Apr 29 2018 *)
  • PARI
    w=vector(9,x,[]); w[1]=[1];
    for(n=2,9,for(k=1,#w[n-1],m=w[n-1][k];v=[];if(m-1,if(m-2,v=[1],v=[1,3]),v=[1,2]);w[n]=concat(w[n],v)));
    w[9] \\ Gerald McGarvey, Dec 18 2009
    
  • PARI
    strsub(s, vv, off=0)=
    {
        my( nl=#vv, r=[], ct=1 );
        while ( ct <= #s,
            r = concat(r, vv[ s[ct] + (1-off) ] );
            ct += 1;
        );
        return( r );
    }
    t=[1];  for (k=1, 10, t=strsub( t, [[1,2], [1,3], [1]], 1 ) );  t
    \\ Joerg Arndt, Sep 14 2013
    
  • PARI
    A092782_vec(N,s=[[1,2],[1,3],1],A=[1])={while(#AM. F. Hasler, Dec 14 2018

Formula

a(n) = 1 for n in A003144; a(n) = 2 for n in A003145; a(n) = 3 for n in A003146.
a(n) = A080843(n-1) + 1. - Joerg Arndt, Sep 14 2013

Extensions

Additional references and links added by N. J. A. Sloane, Aug 17 2018

A113535 Ascending descending base exponent transform of the tribonacci substitution (A100619).

Original entry on oeis.org

1, 3, 8, 19, 32, 9, 11, 16, 26, 19, 29, 24, 47, 70, 28, 31, 58, 89, 35, 50, 65, 108, 65, 51, 52, 90, 101, 82, 101, 88, 122, 63, 81, 92, 153, 110, 89, 125, 110, 92, 101, 155, 90, 127, 196, 142, 87, 138, 207, 112, 112, 135, 217, 150, 124, 115, 204, 245, 139, 158, 189, 268, 121, 155, 154
Offset: 1

Views

Author

Jonathan Vos Post, Jan 13 2006

Keywords

Comments

Sirvent comments that in spite of the similarity of this map to the one in A092782, the two sequences have very different properties. They have different complexities, different Rauzy fractals, etc.

Examples

			a(1) = A100619(1)^A100619(1) = 1^1 = 1.
a(2) = A100619(1)^A100619(2) + A100619(2)^A100619(1) = 1^2 + 2^1 = 3.
a(3) = 1^3 + 2^2 + 3^1 = 8.
a(4) = 1^1 + 2^3 + 3^2 + 1^1 = 19.
a(5) = 1^1 + 2^1 + 3^3 + 1^2 + 1^1 = 32.
a(6) = 1^1 + 2^1 + 3^1 + 1^3 + 1^2 + 1^1 = 9.
a(7) = 1^2 + 2^1 + 3^1 + 1^1 + 1^3 + 1^2 + 2^1 = 11.
a(8) = 1^1 + 2^2 + 3^1 + 1^1 + 1^1 + 1^3 + 2^2 + 1^1 = 16.
a(9) = 1^1 + 2^1 + 3^2 + 1^1 + 1^1 + 1^1 + 2^3 + 1^2 + 2^1 = 26.
a(10) = 1^1 + 2^2 + 3^1 + 1^2 + 1^1 + 1^1 + 2^1 + 1^3 + 2^2 + 1^1 = 19.
a(11) = 1^2 + 2^1 + 3^2 + 1^1 + 1^2 + 1^1 + 2^1 + 1^1 + 2^3 + 1^2 + 2^1 = 29.
a(12) = 1^3 + 2^2 + 3^1 + 1^2 + 1^1 + 1^2 + 2^1 + 1^1 + 2^1+ 1^3 + 2^2 + 3^1 = 24.
		

Crossrefs

Programs

  • Mathematica
    A100619:= Nest[Function[l, {Flatten[(l /. {1 -> {1, 2}, 2 -> {3, 1}, 3 -> {1}})]}], {1}, 8][[1]]; Table[Sum[(A100619[[k]])^(A100619[[n-k+1]]), {k, 1, n}], {n, 1, 100}] (* G. C. Greubel, May 18 2017 *)

Formula

a(n) = Sum_{k=1..n} A100619(k)^(A100619(n-k-1)). - G. C. Greubel, May 18 2017

Extensions

Terms a(13) to a(50) from G. C. Greubel, May 18 2017
Terms a(51) onward added by G. C. Greubel, Jan 03 2019

A317953 Apply the morphism 1 -> {1, 2}, 2 -> {3,1}, 3 -> {1} n times to 1, and concatenate the resulting string.

Original entry on oeis.org

1, 12, 1231, 1231112, 1231112121231, 123111212123112311231112, 12311121212311231123111212311121231112121231, 123111212123112311231112123111212311121212311231112121231123111212123112311231112
Offset: 1

Views

Author

N. J. A. Sloane, Aug 21 2018

Keywords

Comments

For the tribonacci word A092782, each block b(n) (see A103269) is the concatenation of the three previous blocks: b(n) = b(n-1).b(n-2).b(n-3). Instead, here we have a(n) = a(n-1).a(n-3).a(n-2), as can be seen in the examples section below.

Examples

			a(1): 1,
a(2): 12,
a(3): 1231,
a(4): 1231112,
a(5): 1231112121231,
a(6): 123111212123112311231112,
a(7): 12311121212311231123111212311121231112121231,
equals a(6).a(4).a(5), look:
a(6):123111212123112311231112,
a(4):                        1231112,
a(5):                               1231112121231,
a(8): 123111212123112311231112123111212311121212311231112121231123111212123112311231112
equals a(7).a(5).a(6), look:
a(7): 12311121212311231123111212311121231112121231,
a(5):                                             1231112121231,
a(6):                                                          123111212123112311231112,
		

References

  • V. F. Sirvent, Semigroups and the self-similar structure of the flipped tribonacci substitution, Applied Math. Letters, 12 (1999), 25-29.

Crossrefs

Cf. A100619 (the limiting string), A277735, A317953.
A103269 is the analog for the word A092782.

A317196 a(n) = concatenation of n-th stage of the trajectory of 2 under the tribonacci morphism 1 -> {1, 2}, 2 -> {1, 3}, 3 -> {1}.

Original entry on oeis.org

2, 13, 121, 121312, 12131211213, 12131211213121213121, 1213121121312121312112131213121121312, 12131211213121213121121312131211213121213121121312112131212131211213
Offset: 0

Views

Author

N. J. A. Sloane, Aug 05 2018

Keywords

Comments

a(n) is the concatenation of A103269(n-1) and A103269(n-2) for n >= 2.

Crossrefs

Cf. A103269.
Showing 1-6 of 6 results.