A103270 a(n) = (prime(n)+prime(n+k)) mod 4, where k = (prime(n+1)-prime(n))/2.
0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 2
Keywords
Links
- M. F. Hasler, Table of n, a(n) for n = 2..10000
Programs
-
Maple
a:=proc(n) local k: k:=(ithprime(n+1)-ithprime(n))/2: ithprime(n)+ithprime(n+k) mod 4 end: seq(a(n),n=2..130); # Emeric Deutsch, May 31 2005
-
Mathematica
Table[Mod[Prime[n]+Prime[n+(Prime[n+1]-Prime[n])/2],4],{n,2,120}] (* Harvey P. Dale, Jun 30 2020 *)
-
PARI
a(n)=(prime(n+(prime(n+1)-n=prime(n))/2)+n)%4 \\ M. F. Hasler, May 12 2016
-
PARI
{S=0; L=n=1; o=3; forprime(p=4,,S+=(o+prime((-o+o=p)\2+n++))%4;n
M. F. Hasler, Jun 06 2017
Extensions
More terms from Emeric Deutsch, May 31 2005
Comments