cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103274 Number of ways of writing prime(n) in the form 2*prime(i)+prime(j).

Original entry on oeis.org

0, 0, 0, 1, 2, 2, 4, 2, 3, 4, 2, 4, 5, 4, 4, 5, 3, 3, 5, 4, 4, 5, 4, 7, 6, 6, 5, 6, 6, 8, 6, 6, 8, 5, 8, 6, 6, 9, 5, 9, 7, 6, 6, 7, 10, 7, 8, 8, 6, 9, 12, 10, 7, 7, 11, 8, 10, 8, 11, 12, 9, 10, 12, 8, 10, 14, 12, 12, 7, 9, 12, 12, 11, 13, 10, 10, 15, 12, 15, 11, 12, 9, 12, 12, 12, 14, 12, 14, 13
Offset: 1

Views

Author

Yasutoshi Kohmoto, Jan 27 2005

Keywords

Comments

First nonzero entry is for n=4: prime(4)=7=prime(1)+2*prime(3)=2+3*3, hence a(4)=1. Also, a(5)=2 because 11=5+2*3=7+2*2 (two solutions). Note that a(n) is not monotonic. - Zak Seidov, Jan 21 2006
Marnell conjectures that a(n) > 0 for n > 3. I find no exceptions below 10^9. - Charles R Greathouse IV, May 04 2010

Examples

			11=2*2+7=2*3+5, so a(5)=2
a(100)=13 because p(100)=541=p(i)+2*p(j) for 13 pairs {i, j}: {2, 57}, {17, 53}, {23, 50}, {41, 42}, {49, 37}, {52, 36}, {56, 34}, {69, 25}, {76, 22}, {81, 18}, {91, 12}, {92, 11}, {96, 8}; e.g. 541=prime(96)+2*prime(8)=503+2*19. - _Zak Seidov_, Jan 21 2006
		

References

  • Geoffrey R. Marnell, "Ten Prime Conjectures", Journal of Recreational Mathematics 33:3 (2004-2005), pp. 193-196.

Programs

  • Mathematica
    Table[Function[q, Length@ Select[#, Function[s, And[Length@ s == 2, Length@ First@ s == 1, MemberQ[Last@ , 2], Length@ Last@ s == 2]]] &@ Map[SortBy[Flatten[FactorInteger[#] /. {{p_, e_} /; e > 1 :> ConstantArray[p, e], {p_, 1} /; p > 1 :> p, {1, 1} -> 1}] & /@ #, Length] &, Select[IntegerPartitions[q, {2}], And[! MemberQ[#, 1], Total@ Boole@ PrimeQ@ # == 1] &]]]@ Prime@ n, {n, 89}] (* Michael De Vlieger, May 01 2017 *)
  • PARI
    a(n,q=prime(n))=my(s);forprime(p=2,q\2-1,if(isprime(q-2*p),s++));s \\ Charles R Greathouse IV, Jul 22 2015

Formula

a(n) = A046926(prime(n)). - David Wasserman, Oct 08 2005

Extensions

More terms from David Wasserman, Oct 08 2005
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jul 14 2007