A103323 Square array T(n,k) read by antidiagonals: powers of Fibonacci numbers.
1, 1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 9, 5, 1, 1, 16, 27, 25, 8, 1, 1, 32, 81, 125, 64, 13, 1, 1, 64, 243, 625, 512, 169, 21, 1, 1, 128, 729, 3125, 4096, 2197, 441, 34, 1, 1, 256, 2187, 15625, 32768, 28561, 9261, 1156, 55, 1, 1, 512, 6561, 78125, 262144, 371293, 194481, 39304, 3025, 89
Offset: 1
Examples
Square array T(n,k) begins: 1, 1, 2, 3, 5, 8, ... 1, 1, 4, 9, 25, 64, ... 1, 1, 8, 27, 125, 512, ... 1, 1, 16, 81, 625, 4096, ... 1, 1, 32, 243, 3125, 32768, ... 1, 1, 64, 729, 15625, 262144, ... ...
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 138.
Links
- Alois P. Heinz, Antidiagonals n = 1..100, flattened
Crossrefs
Programs
-
Maple
A:= (n, k)-> (<<1|1>, <1|0>>^n)[1, 2]^k: seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Jun 17 2014
-
Mathematica
T[n_, k_] := Fibonacci[k]^n; Table[T[n-k+1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 16 2015 *)
-
PARI
T(n,k)=fibonacci(k)^n
Formula
T(n, k) = A000045(k)^n, n, k > 0.
T(n, k) = Sum[i_1>=0, Sum[i_2>=0, ... Sum[i_{k-1}>=0, C(n, i_1)*C(n-i_1, i_2)*C(n-i_2, i_3)*...*C(n-i_{k-2}, i_{k-1}) ] ... ]].
Comments