cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103323 Square array T(n,k) read by antidiagonals: powers of Fibonacci numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 9, 5, 1, 1, 16, 27, 25, 8, 1, 1, 32, 81, 125, 64, 13, 1, 1, 64, 243, 625, 512, 169, 21, 1, 1, 128, 729, 3125, 4096, 2197, 441, 34, 1, 1, 256, 2187, 15625, 32768, 28561, 9261, 1156, 55, 1, 1, 512, 6561, 78125, 262144, 371293, 194481, 39304, 3025, 89
Offset: 1

Views

Author

Ralf Stephan, Feb 02 2005

Keywords

Comments

Number of ways to create subsets S(1), S(2),..., S(k-1) such that S(1) is in [n] and for 2<=i<=k-1, S(i) is in [n] and S(i) is disjoint from S(i-1).

Examples

			Square array T(n,k) begins:
  1, 1,  2,   3,     5,      8, ...
  1, 1,  4,   9,    25,     64, ...
  1, 1,  8,  27,   125,    512, ...
  1, 1, 16,  81,   625,   4096, ...
  1, 1, 32, 243,  3125,  32768, ...
  1, 1, 64, 729, 15625, 262144, ...
  ...
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 138.

Crossrefs

Main diagonal gives A100399.
Cf. A244003.

Programs

  • Maple
    A:= (n, k)-> (<<1|1>, <1|0>>^n)[1, 2]^k:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Jun 17 2014
  • Mathematica
    T[n_, k_] := Fibonacci[k]^n; Table[T[n-k+1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 16 2015 *)
  • PARI
    T(n,k)=fibonacci(k)^n

Formula

T(n, k) = A000045(k)^n, n, k > 0.
T(n, k) = Sum[i_1>=0, Sum[i_2>=0, ... Sum[i_{k-1}>=0, C(n, i_1)*C(n-i_1, i_2)*C(n-i_2, i_3)*...*C(n-i_{k-2}, i_{k-1}) ] ... ]].