A103347 Numerators of Sum_{k=1..n} 1/k^7 = Zeta(7,n).
1, 129, 282251, 36130315, 2822716691183, 940908897061, 774879868932307123, 99184670126682733619, 650750755630450535274259, 650750820166709327386387, 12681293156341501091194786541177, 12681293507322704937269896541177
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..336
Crossrefs
Programs
-
Maple
f:= n -> numer(Psi(6,n+1)/720 + Zeta(7)): map(f, [$1..20]); # Robert Israel, Mar 28 2018
-
Mathematica
s=0;lst={};Do[s+=n^1/n^8;AppendTo[lst,Numerator[s]],{n,3*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 24 2009 *) Table[ HarmonicNumber[n, 7] // Numerator, {n, 1, 12}] (* Jean-François Alcover, Dec 04 2013 *)
Formula
a(n) = numerator(sum_{k=1..n} 1/k^7).
G.f. for rationals Zeta(7, n): polylogarithm(7, x)/(1-x).
Comments