A103348
Denominators of sum_{k=1..n} 1/k^7 = Zeta(7,n).
Original entry on oeis.org
1, 128, 279936, 35831808, 2799360000000, 933120000000, 768464444160000000, 98363448852480000000, 645362587921121280000000, 645362587921121280000000, 12576291107821424895098880000000, 12576291107821424895098880000000
Offset: 1
A103349
Numerators of sum_{k=1..n} 1/k^8 = Zeta(8,n).
Original entry on oeis.org
1, 257, 1686433, 431733409, 168646292872321, 168646392872321, 972213062238348973121, 248886558707571775009601, 1632944749460578249437992161, 1632944765723715465050248417
Offset: 1
-
s=0;lst={};Do[s+=n^1/n^9;AppendTo[lst,Numerator[s]],{n,3*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 24 2009 *)
Table[ HarmonicNumber[n, 8] // Numerator, {n, 1, 10}] (* Jean-François Alcover, Dec 04 2013 *)
Accumulate[1/Range[10]^8]//Numerator (* Harvey P. Dale, Aug 11 2024 *)
A103351
Numerators of sum_{k=1..n} 1/k^9 = Zeta(9,n).
Original entry on oeis.org
1, 513, 10097891, 5170139875, 10097934603139727, 373997614931101, 15092153145114981831307, 7727182467755471289426059, 4106541588424891370931874221019, 4106541592523201949266162797531
Offset: 1
A103716
Numerators of sum_{k=1..n} 1/k^10 =: Zeta(10,n).
Original entry on oeis.org
1, 1025, 60526249, 61978938025, 605263128567754849, 605263138567754849, 170971856382109814342232401, 175075181098169912564190119249, 10338014371627802833957102351534201, 413520574906423083987893722912609
Offset: 1
A322265
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = numerator of Sum_{j=1..n} 1/j^k.
Original entry on oeis.org
1, 1, 2, 1, 3, 3, 1, 5, 11, 4, 1, 9, 49, 25, 5, 1, 17, 251, 205, 137, 6, 1, 33, 1393, 2035, 5269, 49, 7, 1, 65, 8051, 22369, 256103, 5369, 363, 8, 1, 129, 47449, 257875, 14001361, 28567, 266681, 761, 9, 1, 257, 282251, 3037465, 806108207, 14011361, 9822481, 1077749, 7129, 10
Offset: 1
Square array begins:
1, 1, 1, 1, 1, ...
2, 3/2, 5/4, 9/8, 17/16, ...
3, 11/6, 49/36, 251/216, 1393/1296, ...
4, 25/12, 205/144, 2035/1728, 22369/20736, ...
5, 137/60, 5269/3600, 256103/216000, 14001361/12960000, ...
Columns k=0..10 give
A000027,
A001008,
A007406,
A007408,
A007410,
A099828,
A103345,
A103347,
A103349,
A103351,
A103716.
-
Table[Function[k, Numerator[Sum[1/j^k, {j, 1, n}]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten
Table[Function[k, Numerator[HarmonicNumber[n, k]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten
Table[Function[k, Numerator[SeriesCoefficient[PolyLog[k, x]/(1 - x), {x, 0, n}]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten
Showing 1-5 of 5 results.
Comments