cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103357 Numbers n such that n and pi(n) (A000720) are palindromic.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 262, 323, 393, 525, 535, 555, 666, 818, 878, 949, 2002, 3773, 5775, 6116, 13031, 19591, 39093, 41414, 47374, 59295, 63236, 81918, 94549, 95759, 252252, 394493, 594495, 662266, 674476, 686686, 698896, 764467
Offset: 1

Views

Author

Zak Seidov, Feb 02 2005

Keywords

Crossrefs

Corresponding palindromic pi(n) in A103358.

Programs

  • Mathematica
    NextPalindrome[n_] := Block[ {l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[ idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[ idn, Ceiling[l/2]]]] FromDigits[ Take[ idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[ idn, Ceiling[l/2]], Reverse[ Take[ idn, Floor[l/2]]] ]], idfhn = FromDigits[ Take[ idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[ idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]]]] ]]]];
    p = 0; a = {}; Do[p = NextPalindrome[ p]; q = IntegerDigits[ PrimePi[ p]]; If[ Reverse[q] == q, Print[{p, FromDigits[q]}]; AppendTo[a, p]], {n, 10^4}]; a (* Robert G. Wilson v, Feb 03 2005 *)

Formula

a(n) = P_A103358(n).

Extensions

More terms from Robert G. Wilson v, Feb 03 2005