A103357 Numbers n such that n and pi(n) (A000720) are palindromic.
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 262, 323, 393, 525, 535, 555, 666, 818, 878, 949, 2002, 3773, 5775, 6116, 13031, 19591, 39093, 41414, 47374, 59295, 63236, 81918, 94549, 95759, 252252, 394493, 594495, 662266, 674476, 686686, 698896, 764467
Offset: 1
Links
- Giovanni Resta, Table of n, a(n) for n = 1..196 (terms < 10^16)
Crossrefs
Programs
-
Mathematica
NextPalindrome[n_] := Block[ {l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[ idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[ idn, Ceiling[l/2]]]] FromDigits[ Take[ idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[ idn, Ceiling[l/2]], Reverse[ Take[ idn, Floor[l/2]]] ]], idfhn = FromDigits[ Take[ idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[ idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]]]] ]]]]; p = 0; a = {}; Do[p = NextPalindrome[ p]; q = IntegerDigits[ PrimePi[ p]]; If[ Reverse[q] == q, Print[{p, FromDigits[q]}]; AppendTo[a, p]], {n, 10^4}]; a (* Robert G. Wilson v, Feb 03 2005 *)
Formula
a(n) = P_A103358(n).
Extensions
More terms from Robert G. Wilson v, Feb 03 2005