cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103368 Period 6: repeat [1, 1, -1, -1, 0, 0].

Original entry on oeis.org

1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0, 1, 1, -1, -1, 0, 0
Offset: 0

Views

Author

Paul Barry, Feb 02 2005

Keywords

Comments

The positive sequence is A131719(n+1) = a(n) = cos(2*Pi*n/3+Pi/3)/6 + sqrt(3)*sin(2*Pi*n/3+Pi/3)/6 - sqrt(3)*cos(Pi*n/3+Pi/6)/6 + sin(Pi*n/3+Pi/6)/2 + 2/3, with g.f. (1+x^2) / ( (1-x)*(1-x+x^2)*(1+x+x^2) ).

Crossrefs

Cf. A131719.

Programs

Formula

G.f.: (1+x)/(1+x^2+x^4).
a(n) = Sum_{k=0..floor(n/2)} binomial(k, floor(n/2)-k)*(-1)^k.
a(n) = -cos(2*Pi*n/3+Pi/3)/2 + sqrt(3)*sin(2*Pi*n/3+Pi/3)/6 + sqrt(3)*cos(Pi*n/3+Pi/6)/2 + sin(Pi*n/3+Pi/6)/2.
a(n) = cos(Pi*n/3) + sin(2*Pi*n/3)/sqrt(3). - R. J. Mathar, Oct 08 2011
a(n) + a(n-2) + a(n-4) = 0 for n>3. - Wesley Ivan Hurt, Jun 20 2016
E.g.f.: (sqrt(3)*sin(sqrt(3)*x/2) + 3*cos(sqrt(3)*x/2)*exp(x))*exp(-x/2)/3. - Ilya Gutkovskiy, Jun 21 2016