cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A103377 a(1)=a(2)=...=a(10)=1, a(n)=a(n-9)+a(n-10).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 7, 8, 8, 8, 8, 8, 8, 8, 9, 12, 15, 16, 16, 16, 16, 16, 16, 17, 21, 27, 31, 32, 32, 32, 32, 32, 33, 38, 48, 58, 63, 64, 64, 64, 64, 65, 71, 86, 106, 121, 127, 128, 128, 128, 129, 136, 157, 192, 227
Offset: 1

Views

Author

Jonathan Vos Post, Feb 15 2005

Keywords

Comments

k=9 case of the family of sequences whose k=1 case is the Fibonacci sequence A000045, k=2 case is the Padovan sequence A000931 (offset so as to begin 1,1,1), k=3 case is A079398 (offset so as to begin 1,1,1,1), k=4 case is A103372, k=5 case is A103373, k=6 case is A103374, k=7 case is A103375, k=8 case is A103376, k=10 case is A103378 and k=11 case is A103379. The general case for integer k>1 is defined: a(1) = a(2) = ... = a(k+1)= 1 and for n>(k+1) a(n) = a(n-k) + a(n-[k+1]). For this k=9 case, the ratio of successive terms a(n)/a(n-1) approaches the unique positive root of the characteristic polynomial: x^10 - x - 1 = 0. This is the real constant (to 50 digits accuracy): 1.0757660660868371580595995241652758206925302476392 = A230163. Note that x = (1 + x)^(1/10) = (1 + (1 + (1 + ...)^(1/10))^(1/10))^(1/10). The sequence of prime values in this k=9 case is A103387; The sequence of semiprime values in this k=9 case is A103397.
In analogy to the Fibonacci sequence, one might prefer to start this sequence with offset 0. - M. F. Hasler, Sep 19 2015

Examples

			a(83) = 257 because a(83) = a(83-9) + a(83-10). a(74) + a(73) = 129 + 128. This sequence has as elements 5, 17 and 257, which are all Fermat Primes.
		

References

  • A. J. van Zanten, The golden ratio in the arts of painting, building and mathematics, Nieuw Archief voor Wiskunde, vol 17 no 2 (1999) 229-245.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 1, 1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 90] (* Charles R Greathouse IV, Jan 11 2013 *)
  • PARI
    Vec((1+x+x^2)*(1+x^3+x^6)/(1-x^9-x^10)+O(x^99)) \\ Charles R Greathouse IV, Jan 11 2013

Formula

a(1) = a(2) = a(3) = a(4) = a(5) = a(6) = a(7) = a(8) = a(9) = a(10) = 1 and for n>10: a(n) = a(n-9) + a(n-10).
O.g.f.: -x*(x^2+x+1)*(x^6+x^3+1)/(-1+x^9+x^10). - R. J. Mathar, May 02 2008

Extensions

Edited by R. J. Mathar, May 02 2008
Edited by M. F. Hasler, Sep 19 2015

A103397 Semiprimes in A103377.

Original entry on oeis.org

4, 9, 15, 21, 33, 38, 58, 65, 86, 106, 121, 129, 265, 511, 8114, 8193, 16307, 16853, 17855, 19857, 31298, 68037, 104739, 124205, 131209, 134149, 140457, 152849, 252914, 259918, 265358, 274606, 417527, 2498871, 5291863, 8424051, 8743821
Offset: 1

Views

Author

Jonathan Vos Post, Feb 15 2005

Keywords

Examples

			2071468241 is an element of A103377 and 2071468241= 17 * 121851073 which shows that it is a semiprime.
		

Crossrefs

Programs

  • Mathematica
    SemiprimeQ[n_]:=Plus@@FactorInteger[n][[All, 2]]?2; Clear[a]; k=9; Do[a[n]=1, {n, k+1}]; a[n_]:=a[n]=a[n-k]+a[n-k-1]; A103377=Array[a, 100] A103387=Union[Select[Array[a, 1000], PrimeQ]] A103397=Union[Select[Array[a, 300], SemiprimeQ]] N[Solve[x^10 - x - 1 == 0, x], 111][[2]]

Formula

Intersection of A103377 with A001358.

A103388 Primes in A103378.

Original entry on oeis.org

2, 3, 5, 7, 17, 31, 71, 127, 157, 227, 257, 293, 349, 419, 503, 32299, 33343, 72421, 80429, 134269, 140473, 252761, 2499061, 201329923, 607488611, 1005428989, 2920552289, 8185638173, 10676478541, 14058719281, 15985335181, 34020175663, 159315910211, 1448256661853
Offset: 1

Views

Author

Jonathan Vos Post, Feb 15 2005

Keywords

Crossrefs

Programs

  • Maple
    A103378 := proc(n) option remember ; if n <= 11 then 1; else procname(n-10)+procname(n-11) ; fi; end: isA103378 := proc(n) option remember ; local i ; for i from 1 do if A103378(i) = n then RETURN(true) ; elif A103378(i) > n then RETURN(false) ; fi; od: end: A103388 := proc(n) option remember ; local a; if n = 1 then 2; else a := nextprime(procname(n-1)) ; while true do if isA103378(a) then RETURN(a) ; fi; a := nextprime(a) ; od: fi; end: for n from 1 to 37 do printf("%d, ",A103388(n)) ; od: # R. J. Mathar, Aug 30 2008
  • Mathematica
    Clear[a]; k=10; Do[a[n]=1, {n, k+1}]; a[n_]:=a[n]=a[n-k]+a[n-k-1]; A103387=Union[Select[Array[a, 1000], PrimeQ]] (* See A103377 and A103397 for code related to those. - M. F. Hasler, Sep 19 2015, . *)
  • PARI
    {a=vector(m=10, n, 1); L=0; for(n=m, 10^5, isprime(a[i=n%m+1]+=a[(n+1)%m+1]) && LM. F. Hasler, Sep 19 2015

Formula

Intersection of A103378 with A000040.

Extensions

Corrected from a(16) on by R. J. Mathar, Aug 30 2008
Edited and more terms added by M. F. Hasler, Sep 19 2015

A103398 Semiprimes in A103378.

Original entry on oeis.org

4, 9, 15, 21, 33, 38, 58, 65, 86, 106, 121, 129, 265, 511, 2047, 2049, 4109, 16293, 16489, 17855, 19857, 32678, 34709, 66217, 104739, 220918, 240367, 262298, 293323, 954413, 2082999, 3145729, 3498467, 4296813, 16442015, 18037939, 21317326
Offset: 1

Views

Author

Jonathan Vos Post, Feb 15 2005

Keywords

Crossrefs

Programs

  • Maple
    A103378 := proc(n) option remember; if n <= 11 then 1 ; else procname(n-10)+procname(n-11) ; fi ; end proc:
    a78prev := -1 ; for n from 1 to 400 do a78 := A103378(n) ; if numtheory[bigomega](a78) = 2 and a78 <> a78prev then printf("%d,",a78) ; end if; a78prev := a78 ; end do: # R. J. Mathar, Jun 11 2010
  • Mathematica
    SemiprimeQ[n_]:=Plus@@FactorInteger[n][[All, 2]]?2; Clear[a]; k=10; Do[a[n]=1, {n, k+1}]; a[n_]:=a[n]=a[n-k]+a[n-k-1]; A103377=Array[a, 100] A103387=Union[Select[Array[a, 1000], PrimeQ]] A103397=Union[Select[Array[a, 300], SemiprimeQ]] N[Solve[x^11 - x - 1 == 0, x], 111][[2]] (* Ray Chandler and Robert G. Wilson v *)

Formula

Intersection of A103378 with A001358.

Extensions

Edited and extended by Ray Chandler and Robert G. Wilson v
Entries >511 corrected by R. J. Mathar, Jun 11 2010
Showing 1-4 of 4 results.