A103398 Semiprimes in A103378.
4, 9, 15, 21, 33, 38, 58, 65, 86, 106, 121, 129, 265, 511, 2047, 2049, 4109, 16293, 16489, 17855, 19857, 32678, 34709, 66217, 104739, 220918, 240367, 262298, 293323, 954413, 2082999, 3145729, 3498467, 4296813, 16442015, 18037939, 21317326
Offset: 1
Programs
-
Maple
A103378 := proc(n) option remember; if n <= 11 then 1 ; else procname(n-10)+procname(n-11) ; fi ; end proc: a78prev := -1 ; for n from 1 to 400 do a78 := A103378(n) ; if numtheory[bigomega](a78) = 2 and a78 <> a78prev then printf("%d,",a78) ; end if; a78prev := a78 ; end do: # R. J. Mathar, Jun 11 2010
-
Mathematica
SemiprimeQ[n_]:=Plus@@FactorInteger[n][[All, 2]]?2; Clear[a]; k=10; Do[a[n]=1, {n, k+1}]; a[n_]:=a[n]=a[n-k]+a[n-k-1]; A103377=Array[a, 100] A103387=Union[Select[Array[a, 1000], PrimeQ]] A103397=Union[Select[Array[a, 300], SemiprimeQ]] N[Solve[x^11 - x - 1 == 0, x], 111][[2]] (* Ray Chandler and Robert G. Wilson v *)
Extensions
Edited and extended by Ray Chandler and Robert G. Wilson v
Entries >511 corrected by R. J. Mathar, Jun 11 2010