A103399 Semiprimes in A103379.
4, 9, 15, 21, 33, 38, 58, 65, 86, 106, 121, 129, 265, 511, 2047, 2049, 4097, 4109, 17855, 19857, 32663, 34709, 104739, 130393, 131889, 140474, 220918, 262978, 266174, 274759, 540933, 568083, 1312526, 1665242, 1833203, 2179101, 2295571
Offset: 1
Keywords
Examples
A103379(21) = 4 = 2 * 2, which is semiprime, hence 4 is in this sequence.
Programs
-
Maple
isA103379 := proc(n) option remember ; local i ; for i from 1 do if A103379(i) = n then return true ; elif A103379(i) > n then return false ; fi; od: end proc: A103399 := proc(n) option remember ; local a, i ; if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 then if isA103379(a) then return a ; fi; fi; end do: end if; end proc: for n from 1 do printf("%d,\n",A103399(n)) ; end do: # R. J. Mathar, Aug 30 2008
-
Mathematica
SemiprimeQ[n_]:=Plus@@FactorInteger[n][[All, 2]]?2; Clear[a]; k11; Do[a[n]=1, {n, k+1}]; a[n_]:=a[n]=a[n-k]+a[n-k-1]; A103379=Array[a, 100] A103389=Union[Select[Array[a, 1000], PrimeQ]] A103399=Union[Select[Array[a, 300], SemiprimeQ]] N[Solve[x^12 - x - 1 == 0, x], 111][[2]] (* Program, edit and extension by Ray Chandler and Robert G. Wilson v *)
Extensions
Corrected from a(15) on by R. J. Mathar, Aug 30 2008