cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103400 Semiprimes in A103380.

Original entry on oeis.org

4, 9, 15, 21, 33, 38, 58, 65, 86, 106, 121, 129, 265, 511, 2047, 2049, 4097, 4109, 8193, 17855, 19857, 34709, 66233, 104739, 130953, 131209, 140474, 220918, 258931, 511673, 540951
Offset: 1

Views

Author

Jonathan Vos Post, Feb 16 2005

Keywords

Crossrefs

Programs

  • Maple
    A103380 := proc(n) option remember ; if n <= 13 then 1; else procname(n-12)+procname(n-13) ; fi; end: isA103380 := proc(n) option remember ; local i ; for i from 1 do if A103380(i) = n then RETURN(true) ; elif A103380(i) > n then RETURN(false) ; fi; od: end: A103400 := proc(n) option remember ; local a,i ; if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 then if isA103380(a) then RETURN(a) ; fi; fi; od: fi; end: for n from 1 to 37 do printf("%d, ",A103400(n)) ; od: # R. J. Mathar, Aug 30 2008
  • Mathematica
    SemiprimeQ[n_]:=Plus@@FactorInteger[n][[All, 2]]?2; Clear[a]; k12; Do[a[n]=1, {n, k+1}]; a[n_]:=a[n]=a[n-k]+a[n-k-1]; A103379=Array[a, 100] A103389=Union[Select[Array[a, 1000], PrimeQ]] A103399=Union[Select[Array[a, 300], SemiprimeQ]] N[Solve[x^12 - x - 1 == 0, x], 111][[2]] (* Program, edit and extension by Ray Chandler and Robert G. Wilson v *)

Formula

Intersection of A103380 and A001358.

Extensions

Corrected from a(15) on by R. J. Mathar, Aug 30 2008