cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A103419 Number of compositions of n in which the least part is odd.

Original entry on oeis.org

1, 1, 4, 6, 14, 28, 59, 117, 239, 484, 980, 1973, 3973, 7989, 16054, 32227, 64653, 129628, 259787, 520440, 1042305, 2086938, 4177680, 8361557, 16733221, 33482909, 66992641, 134028938, 268128902, 536373288, 1072934271, 2146173471, 4292842170, 8586488355
Offset: 1

Views

Author

Vladeta Jovovic, Feb 04 2005

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, irem(i, 2), add(
          (t-> b(t, min(i, j, `if`(t>0, t, j))))(n-j), j=1..n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 26 2015
  • Mathematica
    Rest[ CoefficientList[ Series[ Expand[ Sum[(1 - x)^2*x^(2n - 1)/((1 - x - x^(2n))*(1 - x - x^(2n - 1))), {n, 35}]], {x, 0, 35}], x]] (* Robert G. Wilson v, Feb 05 2005 *)

Formula

G.f.: Sum((1-x)^2*x^(2*n-1)/((1-x-x^(2*n))*(1-x-x^(2*n-1))), n=1..infinity).
G.f.: Sum(x^k/((1-x)^k*(1+x^k)),k=1..infinity). - Vladeta Jovovic, Mar 02 2008
a(n) ~ 2^(n-1). - Vaclav Kotesovec, May 01 2014

Extensions

More terms from Robert G. Wilson v, Feb 05 2005

A103420 Number of compositions of n in which the least part is even.

Original entry on oeis.org

0, 1, 0, 2, 2, 4, 5, 11, 17, 28, 44, 75, 123, 203, 330, 541, 883, 1444, 2357, 3848, 6271, 10214, 16624, 27051, 43995, 71523, 116223, 188790, 306554, 497624, 807553, 1310177, 2125126, 3446237, 5587517, 9057611, 14680337, 23789891, 38546834, 62449682, 101163024
Offset: 1

Views

Author

Vladeta Jovovic, Feb 04 2005

Keywords

Crossrefs

Programs

  • Maple
    N:= 50: # for a(1) .. a(N)
    G:= add(x^(2*n)/((1-x)^n*(1+x^n)),n=1..N/2):
    S:= series(G,x,N+1):
    [seq(coeff(S,x,i),i=1..N)]; # Robert Israel, Oct 23 2024
    # second Maple program:
    b:= proc(n, m) option remember; `if`(n=0, 1-
          irem(m, 2), add(b(n-j, min(m, j)), j=1..n))
        end:
    a:= n-> b(n, infinity):
    seq(a(n), n=1..42);  # Alois P. Heinz, Oct 23 2024
  • Mathematica
    Rest[ CoefficientList[ Series[ Expand[ Sum[(1 - x)^2*x^(2n)/((1 - x - x^(2n))*(1 - x - x^(2n + 1))), {n, 40}]], {x, 0, 40}], x]] (* Robert G. Wilson v, Feb 05 2005 *)

Formula

G.f.: Sum((1-x)^2*x^(2*n)/((1-x-x^(2*n))*(1-x-x^(2*n+1))), n=1..infinity).
G.f.: Sum(x^(2*n)/((1-x)^n*(1+x^n)),n=1..infinity). - Vladeta Jovovic, Mar 02 2008
a(n) ~ 1/sqrt(5) * ((1+sqrt(5))/2)^(n-1). - Vaclav Kotesovec, May 01 2014

Extensions

More terms from Robert G. Wilson v, Feb 05 2005

A103421 Number of compositions of n in which the greatest part is odd.

Original entry on oeis.org

1, 1, 2, 3, 7, 14, 30, 62, 129, 263, 534, 1076, 2160, 4318, 8612, 17145, 34097, 67764, 134638, 267506, 531606, 1056812, 2101854, 4182462, 8327263, 16588973, 33066080, 65945522, 131588128, 262702054, 524699094, 1048433468, 2095744336
Offset: 1

Views

Author

Vladeta Jovovic, Feb 04 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[ CoefficientList[ Series[ Expand[ Sum[(1 - x)^2*x^(2n - 1)/((1 - 2x + x^(2n - 1))*(1 - 2x + x^(2n))), {n, 35}]], {x, 0, 35}], x]] (* Robert G. Wilson v, Feb 05 2005 *)

Formula

G.f.: Sum((1-x)^2*x^(2*n-1)/((1-2*x+x^(2*n-1))*(1-2*x+x^(2*n))), n=1..infinity).
a(n) + A103422(n) = 2^(n-1). - R. J. Mathar, Mar 24 2018

Extensions

More terms from Robert G. Wilson v, Feb 05 2005
Showing 1-3 of 3 results.