cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103447 Triangle read by rows: T(n,k) = Moebius(binomial(n,k)) (0 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 0, 1, 0, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 0, 1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 0, 0, 0, -1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 1, -1, -1, -1, -1, 0, 0, 0, 0, -1, -1, -1, -1, 1
Offset: 0

Views

Author

Emeric Deutsch, Feb 06 2005

Keywords

Comments

T(2*n, n) = 0 for all n except n=0, 1, 2 and 4 (Granville and Ramare).

Examples

			T(3,2)=-1 because binomial(3,2)=3 and Moebius(3)=-1.
Triangle begins:
  1;
  1,  1;
  1, -1,  1;
  1, -1, -1,  1;
  1,  0,  1,  0,  1;
  1, -1,  1,  1, -1,  1;
		

Crossrefs

Cf. A007318, A008683, A103448 (row sums), A103449.

Programs

  • Magma
    [MoebiusMu(Binomial(n, k)): k in [0..n], n in [0..15]]; // G. C. Greubel, Jun 16 2021
    
  • Maple
    with(numtheory):T:=proc(n,k) if k<=n then mobius(binomial(n,k)) else 0 fi end: for n from 0 to 15 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_]:= MoebiusMu[Binomial[n, k]]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 16 2021 *)
  • PARI
    T(n,k) = moebius(binomial(n,k))
    for(n=0, 15, for(k=0, n, print1(T(n,k)", "))) \\ Charles R Greathouse IV, Nov 03 2014
    
  • Sage
    def T(n, k): return moebius(binomial(n, k))
    flatten([[T(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jun 16 2021

Formula

T(n, k) = Moebius(binomial(n, k)) (0 <= k <= n).
T(n, k) = A008683(A007318(n, k)).
Sum_{k=0..n} T(n, k) = A103448(n).