cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A105594 Triangle read by rows: abs(A103447)*A047999 mod 2.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1
Offset: 0

Views

Author

Paul Barry, Apr 14 2005

Keywords

Comments

Row sums are A105595.

Examples

			Triangle starts
1;
0,1;
1,1,1;
0,0,0,1;
1,0,1,0,1;
0,1,0,1,0,1;
0,0,0,0,1,1,1;
		

Crossrefs

Programs

  • Maple
    A105594 := proc(n,k)
        add( abs(numtheory[mobius](binomial(n,j)))*modp(binomial(j,k),2) ,j=0..n) ;
        % mod 2 ;
    end proc: # R. J. Mathar, Nov 28 2014
  • Mathematica
    T[n_, k_] := Sum[Abs[MoebiusMu[Binomial[n, j]]*Mod[Binomial[j, k], 2]], {j, 0, n}] // Mod[#, 2]&;
    Table[T[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 15 2020 *)

Formula

T(n, k) = mod(Sum_{j=0..n}(abs(mu(binomial(n,j)))*mod(binomial(j,k),2)), 2).

A249442 a(n) is the smallest m such that binomial(n,m) is not squarefree, or a(n)=0, if there is no such m.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 3, 0, 1, 1, 2, 0, 1, 5, 3, 7, 1, 2, 1, 2, 1, 4, 3, 0, 1, 1, 2, 1, 1, 3, 3, 5, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 8, 1, 1, 2, 21, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 3, 6, 1, 6, 3, 1, 1, 2, 3, 4, 1, 6, 3, 8, 1, 2, 3, 1, 1, 3, 3, 8, 1, 1, 2, 3, 1, 5, 3
Offset: 0

Views

Author

Keywords

Comments

The sequence gives the position of the first zero on row n (both starting from zero) in the triangular table A103447, and zero if there is no zero on that row. After a(0) = 0, A048278 gives the positions of seven other zeros in the sequence.
Records are 0,1,3,5,7,8,21,... (A249439) in positions 0,4,6,13,15,43,47,... (A249440).

Crossrefs

A249439 gives the record values, A249440 the positions where they occur for the first time.
Differs from A249695 for the first time at n=9.

Programs

  • Mathematica
    Table[If[#>n,0,#]&[NestWhile[#+1&,1,SquareFreeQ[Binomial[n,#]]&]],{n,0,100}] (* Peter J. C. Moses, Nov 04 2014 *)
  • PARI
    A249442(n) = { for(k=0,n\2,if(0==moebius(binomial(n,k)),return(k))); return(0); }
    for(n=0, 10000, write("b249442.txt", n, " ", A249442(n)));
    \\ Antti Karttunen, Nov 04 2014

Formula

Other identities:
A249716(n) = binomial(n, a(n)). [A249716(n) gives the corresponding minimal nonsquarefree binomial coefficient, or 1 when n is one of the terms of A048278].

Extensions

More terms from Peter J. C. Moses, Oct 28 2014

A103448 a(n) = Sum_{k=0..n} Moebius(binomial(n,k)).

Original entry on oeis.org

1, 2, 1, 0, 3, 2, 6, 4, 1, 2, 6, 4, 0, -6, 8, 6, 2, -2, 2, -4, 4, 10, 4, 8, 0, 4, 8, 2, 4, 0, -2, -4, 2, 4, 0, 4, 2, -4, 10, 4, 0, -8, 6, -2, 4, -4, 8, 2, 2, 2, 2, 4, 6, 2, 0, 6, 2, 2, 2, -6, 0, 6, 4, 8, 2, 4, 2, 0, 0, 8, -4, -2, 2, 4, 2, 0, -2, 14, 10, -2, 2, 2, 4, 2, 4, -2, 0, 8, 4, 2, 2, -2, 6, 0, -6, 14, 2, 0, 2, 2, 2, 4, 0, 2, -2
Offset: 0

Views

Author

Emeric Deutsch, Feb 07 2005

Keywords

Comments

Row sums of A103447.

Examples

			a(4)=3 because mu(1) + mu(4) + mu(6) + mu(4) + mu(1) = 1 + 0 + 1 + 0 + 1 = 3.
		

Crossrefs

Programs

  • Magma
    [(&+[ MoebiusMu(Binomial(n, k)): k in [0..n]]): n in [0..120]]; // G. C. Greubel, Jun 16 2021
    
  • Mathematica
    Table[Sum[MoebiusMu[Binomial[n, k]], {k,0,n}], {n,0,120}] (* G. C. Greubel, Jun 16 2021 *)
  • PARI
    a(n) = sum(k=0, n, moebius(binomial(n, k))); \\ Michel Marcus, Jun 17 2021
  • Sage
    [sum(moebius(binomial(n, k)) for k in (0..n)) for n in (0..120)] # G. C. Greubel, Jun 16 2021
    

Formula

a(n) = Sum_{k=0..n} Moebius(binomial(n,k)).
a(n) = Sum_{k=0..n} A008683(A007318(n,k)).

A103449 Values of k such that Sum_{m=0..k} Moebius(binomial(k,m)) = 0.

Original entry on oeis.org

3, 12, 24, 29, 34, 40, 54, 60, 67, 68, 75, 86, 93, 97, 102, 119, 125, 131, 133, 142, 152, 157, 160, 163, 164, 168, 170, 172, 189, 193, 197, 208, 210, 220, 221, 228, 229, 246, 251, 255, 257, 261, 270, 275, 280, 293, 296, 307, 308, 313, 315, 332, 337, 338, 340
Offset: 1

Views

Author

Emeric Deutsch, Feb 07 2005

Keywords

Comments

Values of k such that A103448(k) = 0.

Examples

			12 belongs to the sequence because the only squarefree values of binomial(12,m) are 1, 2*3*11, 2*3*11, 1, on which the Mobius function takes the values 1,-1,-1,1, respectively.
8 does not belong to the sequence because the only squarefree value of binomial(8,m) are 1, 2*5*7, 1, on which the Moebius function takes the values 1,-1,1, respectively.
		

Crossrefs

Programs

  • Mathematica
    A103448[n_]:= A103448[n]= Sum[MoebiusMu[Binomial[n, k]], {k, 0, n}];
    f:= Table[A103448[n], {n, 0, 1050}];
    Select[Range[0, 1000], f[[#]] == 0 &] - 1  (* G. C. Greubel, Jun 17 2021 *)
  • PARI
    is(k) = sum(m=0, k, moebius(binomial(k, m)))==0 \\ Felix Fröhlich, Jun 18 2021
Showing 1-4 of 4 results.