cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103448 a(n) = Sum_{k=0..n} Moebius(binomial(n,k)).

Original entry on oeis.org

1, 2, 1, 0, 3, 2, 6, 4, 1, 2, 6, 4, 0, -6, 8, 6, 2, -2, 2, -4, 4, 10, 4, 8, 0, 4, 8, 2, 4, 0, -2, -4, 2, 4, 0, 4, 2, -4, 10, 4, 0, -8, 6, -2, 4, -4, 8, 2, 2, 2, 2, 4, 6, 2, 0, 6, 2, 2, 2, -6, 0, 6, 4, 8, 2, 4, 2, 0, 0, 8, -4, -2, 2, 4, 2, 0, -2, 14, 10, -2, 2, 2, 4, 2, 4, -2, 0, 8, 4, 2, 2, -2, 6, 0, -6, 14, 2, 0, 2, 2, 2, 4, 0, 2, -2
Offset: 0

Views

Author

Emeric Deutsch, Feb 07 2005

Keywords

Comments

Row sums of A103447.

Examples

			a(4)=3 because mu(1) + mu(4) + mu(6) + mu(4) + mu(1) = 1 + 0 + 1 + 0 + 1 = 3.
		

Crossrefs

Programs

  • Magma
    [(&+[ MoebiusMu(Binomial(n, k)): k in [0..n]]): n in [0..120]]; // G. C. Greubel, Jun 16 2021
    
  • Mathematica
    Table[Sum[MoebiusMu[Binomial[n, k]], {k,0,n}], {n,0,120}] (* G. C. Greubel, Jun 16 2021 *)
  • PARI
    a(n) = sum(k=0, n, moebius(binomial(n, k))); \\ Michel Marcus, Jun 17 2021
  • Sage
    [sum(moebius(binomial(n, k)) for k in (0..n)) for n in (0..120)] # G. C. Greubel, Jun 16 2021
    

Formula

a(n) = Sum_{k=0..n} Moebius(binomial(n,k)).
a(n) = Sum_{k=0..n} A008683(A007318(n,k)).