A103460 a(n) = 9^n + 1 - 0^n.
1, 10, 82, 730, 6562, 59050, 531442, 4782970, 43046722, 387420490, 3486784402, 31381059610, 282429536482, 2541865828330, 22876792454962, 205891132094650, 1853020188851842, 16677181699666570, 150094635296999122
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Patrick De Geest, World!Of Numbers
- Index entries for linear recurrences with constant coefficients, signature (10, -9).
Programs
-
Magma
[1] cat [9^n +1: n in [1..40]]; // G. C. Greubel, Jun 26 2021
-
Mathematica
Table[9^n + 1 - Boole[n==0], {n,0,40}] (* G. C. Greubel, Jun 26 2021 *)
-
Sage
[1]+[9^n +1 for n in (1..40)] # G. C. Greubel, Jun 26 2021
Formula
G.f.: (1-9*x^2)/((1-x)*(1-9*x)).
a(n) = Sum_{k=0..n} binomial(n, k)*0^(k*(n-k))*9^k.
a(n) = A062396(n), n > 0. - R. J. Mathar, Aug 28 2008
a(n) = 9*a(n-1) - 8, with a(1)=10. - Vincenzo Librandi, Dec 29 2010
E.g.f.: -1 + exp(x) + exp(9*x). - G. C. Greubel, Jun 26 2021
Comments