A103477 Positive integers k for which 1 + 3*2^(k+2) divides the Fermat number 1 + 2^(2^k).
207, 157167, 213319, 382447, 2145351
Offset: 1
Examples
a(1)=207 because 207 is the smallest positive integer k for which 1 + 3*2^(k+2) divides the Fermat number 1 + 2^(2^k).
Links
- Wilfrid Keller, Prime factors k*2^n + 1 of Fermat numbers F_m
Programs
-
Mathematica
aQ[n_] := PowerMod[2, 2^n, 1 + 3*2^(n+2)] == 3*2^(n+2); Select[Range[100000], aQ] (* Amiram Eldar, Dec 04 2018 *)
-
PARI
isOK(n) = Mod(2, 1+3*2^(n+2))^(2^n) + 1 == 0 \\ Jeppe Stig Nielsen, Dec 03 2018
Extensions
Sequence name trimmed by Jeppe Stig Nielsen, Dec 03 2018
Comments