A103491 Multiplicative suborder of 5 (mod n) = sord(5, n).
0, 0, 1, 1, 1, 0, 1, 3, 2, 3, 0, 5, 2, 2, 3, 0, 4, 8, 3, 9, 0, 3, 5, 11, 2, 0, 2, 9, 6, 7, 0, 3, 8, 10, 8, 0, 6, 18, 9, 4, 0, 10, 3, 21, 5, 0, 11, 23, 4, 21, 0, 16, 4, 26, 9, 0, 6, 18, 7, 29, 0, 15, 3, 3, 16, 0, 10, 11, 16, 11, 0, 5, 6, 36, 18, 0, 9, 30, 4, 39, 0, 27, 10, 41, 6, 0, 21, 7, 10, 22, 0
Offset: 0
References
- H. Cohen, Course in Computational Algebraic Number Theory, Springer, 1993, p. 25, Algorithm 1.4.3
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Multiplicative Order.
- S. Wolfram, Algebraic Properties of Cellular Automata (1984), Appendix B.
- Eric Weisstein's World of Mathematics, Suborder Function
Crossrefs
Cf. A019335.
Programs
-
Maple
f:= proc(n) local x; if n mod 5 = 0 then return 0 fi; x:= numtheory:-mlog(-1,5,n); if x <> FAIL then x else numtheory:-order(5,n) fi end proc: f(1):= 0: map(f, [$0..100]); # Robert Israel, Mar 20 2020
-
Mathematica
Suborder[k_, n_] := If[n > 1 && GCD[k, n] == 1, Min[MultiplicativeOrder[k, n, {-1, 1}]], 0]; a[n_] := Suborder[5, n]; a /@ Range[0, 100] (* Jean-François Alcover, Mar 21 2020, after T. D. Noe in A003558 *)
Comments