A103591
Smallest number m such that Sum_{k=1..m} 1/prime(k) >= n/2.
Original entry on oeis.org
1, 3, 10, 59, 1413, 361139, 4833601540, 43922730588128390
Offset: 1
-
Table[m = 1; s = 0; While[(s = s + 1/Prime[m]) < n/2, m++];
m, {n, 1, 5}] (* Robert Price, Mar 27 2019 *)
-
a(n) = my(s = 0, k = 1); while ((s += 1/prime(k)) < n/2, k++); k \\ Michel Marcus, Aug 22 2013
A103592
a(n) is the smallest prime p such that Sum_{primes q <= p} 1/q >= n/2.
Original entry on oeis.org
2, 5, 29, 277, 11789, 5195977, 118185163069, 1801241230056600523
Offset: 1
-
Table[m = 1; s = 0; While[(s = s + 1/Prime[m]) < n/2, m++];
Prime[m], {n, 1, 8}] (* Robert Price, Mar 27 2019 *)
A103599
Smallest number m such that Sum_{k=1..m} 1/prime(k) >= n/6.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 6, 10, 16, 29, 59, 140, 400, 1413, 6467, 40261, 361139, 4990906, 114916199, 4833601540
Offset: 1
-
For[n = 1, n ≤ 17, n++, sum = 0; For[k = 1, k ≤ 10^6, k++, sum = sum + 1/Prime[k]; If[sum >= n/6, Print[k]; Break[]]]] (* Robert Price, Dec 09 2013 *)
Table[m = 1; s = 0; While[(s = s + 1/Prime[m]) < n/6, m++];
m, {n, 1, 17}] (* Robert Price, Mar 27 2019 *)
a(2)-a(4) and a(19)-a(21) added by
Robert Price, Dec 10 2013
A103593
Smallest number m such that Sum_{k=1..m} 1/prime(k) >= n/3.
Original entry on oeis.org
1, 2, 3, 6, 16, 59, 400, 6467, 361139, 114916199
Offset: 1
-
Table[m = 1; s = 0; While[(s = s + 1/Prime[m]) < n/3, m++];
m, {n, 1, 10}] (* Robert Price, Mar 27 2019 *)
A103594
Smallest prime p such that Sum_{primes q <= p} 1/q >= n/3.
Original entry on oeis.org
2, 3, 5, 13, 53, 277, 2741, 64663, 5195977, 2358926351, 12041724518809, 1801241230056600523
Offset: 1
-
Table[m = 1; s = 0; While[(s = s + 1/Prime[m]) < n/3, m++];
Prime[m], {n, 1, 10}] (* Robert Price, Mar 27 2019 *)
A103595
Smallest number m such that Sum_{k=1..m} 1/prime(k) >= n/4.
Original entry on oeis.org
1, 1, 2, 3, 5, 10, 21, 59, 231, 1413, 15474, 361139, 22347214, 4833601540
Offset: 1
-
Table[m = 1; s = 0; While[(s = s + 1/Prime[m]) < n/4, m++];
m, {n, 1, 14}] (* Robert Price, Mar 27 2019 *)
A103596
Smallest prime p such that Sum_{primes q <= p} 1/q >= n/4.
Original entry on oeis.org
2, 2, 3, 5, 11, 29, 73, 277, 1453, 11789, 169751, 5195977, 420055319, 118185163069
Offset: 1
-
For[n = 1, n ≤ 17, n++, sum = 0; For[k = 1, k ≤ 10^6, k++, sum = sum + 1/Prime[k]; If[sum >= n/4, Print[Prime[k]]; Break[]]]]
Table[m = 1; s = 0; While[(s = s + 1/Prime[m]) < n/4, m++];
Prime[m], {n, 1, 14}] (* Robert Price, Mar 27 2019 *)
A103597
Smallest number m such that Sum_{k=1..m} 1/prime(k) >= n/5.
Original entry on oeis.org
1, 1, 2, 2, 3, 5, 7, 13, 25, 59, 170, 644, 3402, 27178, 361139, 8947437, 474314304
Offset: 1
-
Table[m = 1; s = 0; While[(s = s + 1/Prime[m]) < n/5, m++];
m, {n, 1, 17}] (* Robert Price, Mar 27 2019 *)
A103598
Smallest prime p such that Sum_{primes q <= p} 1/q >= n/5.
Original entry on oeis.org
2, 2, 3, 3, 5, 11, 17, 41, 97, 277, 1013, 4789, 31627, 314723, 5195977, 159490147, 10443979657
Offset: 1
-
For[n = 1, n ≤ 17, n++, sum = 0; For[k = 1, k ≤ 10^6, k++, sum = sum + 1/Prime[k]; If[sum >= n/5, Print[Prime[k]]; Break[]]]]
Table[m = 1; s = 0; While[(s = s + 1/Prime[m]) < n/5, m++];
Prime[m], {n, 1, 17}] (* Robert Price, Mar 27 2019 *)
Showing 1-9 of 9 results.
Comments