A103619 Number of permutations of n elements admitting a cube root.
1, 1, 2, 4, 16, 80, 400, 2800, 22400, 181440, 1814400, 19958400, 218803200, 2844441600, 39822182400, 556972416000, 8911558656000, 151496497152000, 2579172973977600, 49004286505574400, 980085730111488000, 19584861165821952000, 430866945648082944000
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
- H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 149, Eq. 4.8.2.
Programs
-
Maple
with(combinat): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(`if`(irem(j, igcd(i, 3))<>0, 0, (i-1)!^j* multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1)), j=0..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..25); # Alois P. Heinz, Sep 08 2014
-
Mathematica
CoefficientList[Series[(1-x^3)^(1/3)/(1-x) * Product[1/3*E^(1/3*x^(3*m)/m) + 2/3*E^(-1/6*x^(3*m)/m) * Cos[1/6*3^(1/2)*x^(3*m)/m],{m,1,20}],{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Sep 13 2014 *)
Formula
E.g.f.: (1-x^3)^(1/3)/(1-x)*Product(1/3*exp(1/3*x^(3*m)/m)+2/3*exp(-1/6*x^(3*m)/m)*cos(1/6*3^(1/2)*x^(3*m)/m), m = 1 .. infinity).