A103620 Number of permutations of n elements admitting a fourth root.
1, 1, 1, 3, 9, 45, 225, 1575, 11130, 100170, 897750, 9875250, 108523800, 1410809400, 18332414100, 274986211500, 4127136413400, 70161319027800, 1192076391706200, 22649451442417800, 430247983427262000, 9035207651972502000
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
- H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 149, Eq. 4.8.2.
Programs
-
Maple
with(combinat): with(numtheory): with(padic): b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add( `if`(irem(j, mul(p^ordp(4, p), p=factorset(i)))=0, (i-1)!^j* multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1), 0), j=0..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..25); # Alois P. Heinz, Sep 09 2014
-
Mathematica
CoefficientList[Series[((1+x)/(1-x))^(1/2) * Product[1/2*Cos[1/2*x^(2*m)/m] + 1/2*Cosh[1/2*x^(2*m)/m],{m,1,20}],{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Sep 13 2014 *)
Formula
E.g.f.: ((1+x)/(1-x))^(1/2)*Product(1/2*cos(1/2*x^(2*m)/m)+1/2*cosh(1/2*x^(2*m)/m), m = 1 .. infinity).