A103632 Expansion of (1 - x + x^2)/(1 - x - x^4).
1, 0, 1, 1, 2, 2, 3, 4, 6, 8, 11, 15, 21, 29, 40, 55, 76, 105, 145, 200, 276, 381, 526, 726, 1002, 1383, 1909, 2635, 3637, 5020, 6929, 9564, 13201, 18221, 25150, 34714, 47915, 66136, 91286, 126000, 173915, 240051, 331337, 457337, 631252, 871303, 1202640
Offset: 0
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..1000
- V. E. Hoggatt, Jr., and Marjorie Bicknell, Palindromic compositions, Fibonacci Quart., Vol. 13(4), 1975, pp. 350-356.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1).
Crossrefs
Cf. A275446.
Programs
-
GAP
a:=[1,0,1,1];; for n in [5..50] do a[n]:=a[n-1]+a[n-4]; od; a; # Muniru A Asiru, Oct 07 2018
-
Magma
I:=[1,0,1,1]; [n le 4 select I[n] else Self(n-1) + Self(n-4): n in [1..50]]; // G. C. Greubel, Mar 10 2019
-
Maple
A103632 := proc(n): add( binomial(floor((2*n-3*k-1)/2), n-2*k), k=0..floor(n/2)) end: seq(A103632(n), n=0..46); # Johannes W. Meijer, Aug 11 2011
-
Mathematica
LinearRecurrence[{1,0,0,1}, {1,0,1,1}, 50] (* G. C. Greubel, Mar 10 2019 *)
-
PARI
my(x='x+O('x^50)); Vec((1-x+x^2)/(1-x-x^4)) \\ G. C. Greubel, Mar 10 2019
-
Sage
((1-x+x^2)/(1-x-x^4)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Mar 10 2019
Formula
Extensions
Formula corrected by Johannes W. Meijer, Aug 11 2011
Comments