cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103650 G.f.: x^2/((1-x^2)^2*Product_{i>0}(1-x^i)).

Original entry on oeis.org

0, 1, 1, 4, 5, 12, 16, 31, 42, 72, 98, 155, 210, 315, 423, 610, 812, 1136, 1498, 2047, 2674, 3585, 4642, 6125, 7865, 10240, 13046, 16791, 21237, 27060, 33993, 42933, 53591, 67155, 83332, 103687, 127956, 158196, 194217, 238720, 291663, 356582
Offset: 1

Views

Author

Vladeta Jovovic, Mar 26 2005

Keywords

Comments

Let pi be a partition of n and b(pi,k) = Sum p, where p runs over all distinct parts p of pi whose multiplicities are >=k. Let T(n,k) = Sum b(pi,k), when pi runs over all partitions pi of n. G.f. for T(n,k) is x^k/((1-x^k)^2*Product_{i>0}(1-x^i)). a(n) = T(n,2).

Examples

			Partitions of 4 are [1, 1, 1, 1], [1, 1, 2], [2, 2], [1, 3], [4] and a(4) = 1 + 1 + 2 + 0 + 0 = 4.
		

Crossrefs

Cf. A014153.

Programs

  • Mathematica
    Drop[ CoefficientList[ Series[ x^2/((1 - x^2)^2*Product[(1 - x^i), {i, 50}]), {x, 0, 42}], x], 1] (* Robert G. Wilson v, Mar 29 2005 *)
    Table[Sum[PartitionsP[k]*(n-k)*(1 + (-1)^(n-k))/4, {k, 0, n}], {n, 1, 50}] (* Vaclav Kotesovec, Jul 30 2016 *)

Formula

a(n) = Sum_{k>0} k * A264404(n,k). - Alois P. Heinz, Nov 29 2015
For n>2, a(n) is the Euler transform of [1,3,1,1,1,1,...]. - Benedict W. J. Irwin, Jul 29 2016
a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n/3)) / (8*Pi^2). - Vaclav Kotesovec, Jul 30 2016

Extensions

More terms from Robert G. Wilson v, Mar 29 2005