A103650 G.f.: x^2/((1-x^2)^2*Product_{i>0}(1-x^i)).
0, 1, 1, 4, 5, 12, 16, 31, 42, 72, 98, 155, 210, 315, 423, 610, 812, 1136, 1498, 2047, 2674, 3585, 4642, 6125, 7865, 10240, 13046, 16791, 21237, 27060, 33993, 42933, 53591, 67155, 83332, 103687, 127956, 158196, 194217, 238720, 291663, 356582
Offset: 1
Examples
Partitions of 4 are [1, 1, 1, 1], [1, 1, 2], [2, 2], [1, 3], [4] and a(4) = 1 + 1 + 2 + 0 + 0 = 4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..500
Crossrefs
Cf. A014153.
Programs
-
Mathematica
Drop[ CoefficientList[ Series[ x^2/((1 - x^2)^2*Product[(1 - x^i), {i, 50}]), {x, 0, 42}], x], 1] (* Robert G. Wilson v, Mar 29 2005 *) Table[Sum[PartitionsP[k]*(n-k)*(1 + (-1)^(n-k))/4, {k, 0, n}], {n, 1, 50}] (* Vaclav Kotesovec, Jul 30 2016 *)
Formula
a(n) = Sum_{k>0} k * A264404(n,k). - Alois P. Heinz, Nov 29 2015
For n>2, a(n) is the Euler transform of [1,3,1,1,1,1,...]. - Benedict W. J. Irwin, Jul 29 2016
a(n) ~ sqrt(3) * exp(Pi*sqrt(2*n/3)) / (8*Pi^2). - Vaclav Kotesovec, Jul 30 2016
Extensions
More terms from Robert G. Wilson v, Mar 29 2005
Comments