A103660
(1/2) * number of occurrences of the most frequent volume given in A103659 assumed by triangular pyramids with their 4 vertices chosen from distinct points of an (n+1)X(n+1)X(n+1) lattice cube.
Original entry on oeis.org
28, 2636, 47175, 433800, 2539628, 11995110, 44602758, 139885368, 379716780, 926937330, 2055408018, 4473284223, 8941638240, 16995482919
Offset: 1
A103157
Number of ways to choose 4 distinct points from an (n+1) X (n+1) X (n+1) lattice cube.
Original entry on oeis.org
70, 17550, 635376, 9691375, 88201170, 566685735, 2829877120, 11671285626, 41417124750, 130179173740, 370215608400, 968104633665, 2357084537626, 5396491792125, 11710951848960, 24246290643940, 48151733324310, 92140804597626, 170538695998000, 306294282269955
Offset: 1
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
A103657
Number of different volumes assumed by triangular pyramids with their 4 vertices chosen from distinct points of an (n+1)X(n+1)X(n+1) lattice cube, including degenerate objects with volume=0.
Original entry on oeis.org
3, 13, 39, 90, 178, 309, 503, 756, 1096, 1523, 2059, 2683, 3469, 4355, 5406
Offset: 1
a(1)=3 because 4-point objects with 3 different volumes can be built using the vertices of a cube: 2 regular tetrahedra (e.g. [(0,0,0),(0,1,1),(1,0,1),(1,1,0)]) with volume 1/3, 56 pyramids with volume 1/6 and 12 objects with volume=0, e.g. the faces of the cube.
a(2)=13: The A103157(2)=17550 4-point objects that can selected from the 27 points of a 3X3X3 lattice cube fall into 13 different volume classes (6*V,occurrences):
(0,2918), (1,3688), (2,5272), (3,1272), (4,2788), (5,272), (6,684), (7,72), (8,494), (9,16), (10,48), (12,24), (16,2).
A103658(n) gives the occurrence counts of objects with V=0 (i.e. A103658(2)=2918).
A103659(n) gives 6*V of the most frequently occurring volume and A103660(n) gives the corresponding occurrence count, divided by 2. Therefore A103659(2)=2 and A103660(2)=2636.
A103661(n) gives the smallest value of 6*V not occurring in the list of 4-point object volumes, i.e. A103661(2)=11.
Showing 1-3 of 3 results.