cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103710 Decimal expansion of the ratio of the length of the latus rectum arc of any parabola to its semi latus rectum: sqrt(2) + log(1 + sqrt(2)).

Original entry on oeis.org

2, 2, 9, 5, 5, 8, 7, 1, 4, 9, 3, 9, 2, 6, 3, 8, 0, 7, 4, 0, 3, 4, 2, 9, 8, 0, 4, 9, 1, 8, 9, 4, 9, 0, 3, 8, 7, 5, 9, 7, 8, 3, 2, 2, 0, 3, 6, 3, 8, 5, 8, 3, 4, 8, 3, 9, 2, 9, 9, 7, 5, 3, 4, 6, 6, 4, 4, 1, 0, 9, 6, 6, 2, 6, 8, 4, 1, 3, 3, 1, 2, 6, 6, 8, 4, 0, 9, 4, 4, 2, 6, 2, 3, 7, 8, 9, 7, 6, 1, 5, 5, 9, 1, 7, 5
Offset: 1

Views

Author

Sylvester Reese and Jonathan Sondow, Feb 13 2005

Keywords

Comments

The universal parabolic constant, equal to the ratio of the latus rectum arc of any parabola to its focal parameter. Like Pi, it is transcendental.
Just as all circles are similar, all parabolas are similar. Just as the ratio of a semicircle to its radius is always Pi, the ratio of the latus rectum arc of any parabola to its semi latus rectum is sqrt(2) + log(1 + sqrt(2)).
Note the remarkable similarity to sqrt(2) - log(1 + sqrt(2)), the universal equilateral hyperbolic constant A222362, which is a ratio of areas rather than of arc lengths. Lockhart (2012) says "the arc length integral for the parabola .. is intimately connected to the hyperbolic area integral ... I think it is surprising and wonderful that the length of one conic section is related to the area of another."
Is it a coincidence that the universal parabolic constant is equal to 6 times the expected distance A103712 from a randomly selected point in the unit square to its center? (Reese, 2004; Finch, 2012)

Examples

			2.29558714939263807403429804918949038759783220363858348392997534664...
		

References

  • H. Dörrie, 100 Great Problems of Elementary Mathematics, Dover, 1965, Problems 57 and 58.
  • P. Lockhart, Measurement, Harvard University Press, 2012, p. 369.
  • C. E. Love, Differential and Integral Calculus, 4th ed., Macmillan, 1950, pp. 286-288.
  • C. S. Ogilvy, Excursions in Geometry, Oxford Univ. Press, 1969, p. 84.
  • S. Reese, A universal parabolic constant, 2004, preprint.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sqrt[2] + Log[1 + Sqrt[2]], 10, 111][[1]] (* Robert G. Wilson v Feb 14 2005 *)
  • Maxima
    fpprec: 100$ ev(bfloat(sqrt(2) + log(1 + sqrt(2)))); /* Martin Ettl, Oct 17 2012 */
    
  • PARI
    sqrt(2)+log(1+sqrt(2)) \\ Charles R Greathouse IV, Mar 08 2013

Formula

Equals 2*Integral_{x = 0..1} sqrt(1 + x^2) dx. - Peter Bala, Feb 28 2019