A103711 Decimal expansion of the ratio of the length of the latus rectum arc of any parabola to its latus rectum: (sqrt(2) + log(1 + sqrt(2)))/2.
1, 1, 4, 7, 7, 9, 3, 5, 7, 4, 6, 9, 6, 3, 1, 9, 0, 3, 7, 0, 1, 7, 1, 4, 9, 0, 2, 4, 5, 9, 4, 7, 4, 5, 1, 9, 3, 7, 9, 8, 9, 1, 6, 1, 0, 1, 8, 1, 9, 2, 9, 1, 7, 4, 1, 9, 6, 4, 9, 8, 7, 6, 7, 3, 3, 2, 2, 0, 5, 4, 8, 3, 1, 3, 4, 2, 0, 6, 6, 5, 6, 3, 3, 4, 2, 0, 4, 7, 2, 1, 3, 1, 1, 8, 9, 4, 8, 8, 0, 7, 7, 9, 5, 8, 7
Offset: 1
Examples
1.14779357469631903701714902459474519379891610181929174196498767332...
References
- H. Dörrie, 100 Great Problems of Elementary Mathematics, Dover, 1965, Problems 57 and 58.
- C. E. Love, Differential and Integral Calculus, 4th ed., Macmillan, 1950, pp. 286-288.
- C. S. Ogilvy, Excursions in Geometry, Oxford Univ. Press, 1969, p. 84.
- S. Reese, A universal parabolic constant, 2004, preprint.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- J. L. Diaz-Barrero and W. Seaman, A limit computed by integration, Problem 810 and Solution, College Math. J., 37 (2006), 316-318, equation (5).
- Steven R. Finch, Mathematical Constants, Errata and Addenda, arXiv:2001.00578 [math.HO], 2012-2024, section 8.1.
- M. Hajja, Review Zbl 1291.51018, zbMATH 2015.
- M. Hajja, Review Zbl 1291.51016, zbMATH 2015.
- H. Khelif, L’arbelos, Partie II, Généralisations de l’arbelos, Images des Mathématiques, CNRS, 2014.
- J. Pahikkala, Arc Length Of Parabola, PlanetMath.
- S. Reese, Pohle Colloquium Video Lecture: The universal parabolic constant, Feb 02 2005
- S. Reese and Jonathan Sondow, Universal Parabolic Constant, MathWorld
- Jonathan Sondow, The parbelos, a parabolic analog of the arbelos, arXiv 2012, Amer. Math. Monthly, 120 (2013), 929-935.
- E. Tsukerman, Solution of Sondow's problem: a synthetic proof of the tangency property of the parbelos, arXiv 2012, Amer. Math. Monthly, 121 (2014), 438-443.
- Eric Weisstein's World of Mathematics, Universal Parabolic Constant
- Wikipedia, Universal parabolic constant
- Index entries for transcendental numbers
Crossrefs
Programs
-
Mathematica
RealDigits[(Sqrt[2] + Log[1 + Sqrt[2]])/2, 10, 111][[1]] (* Robert G. Wilson v, Feb 14 2005 *) N[Integrate[Sqrt[1 + x^2], {x, 0, 1}], 120] (* Clark Kimberling, Jan 06 2014 *)
Formula
Equals Integral_{x = 0..1} sqrt(1 + x^2) dx. - Peter Bala, Feb 28 2019
Equals Sum_{n>=0} (-1)^(n + 1)*binomial(2*n, n)/((4*n^2 - 1)*4^n). - Antonio Graciá Llorente, Dec 16 2024
Comments