cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103715 Define a(1)=0, a(2)=0, a(3)=1, a(4)=3, a(5)=18, a(6)=22, a(7)=119, a(8)=285. Then a(n) = a(n-8) + 4*sqrt(420*a(n-4)^2 + 420*a(n-4) + 1).

Original entry on oeis.org

0, 0, 1, 3, 18, 22, 119, 285, 1516, 1844, 9797, 23407, 124334, 151226, 803275, 1919129, 10193912, 12398728, 65858793, 157345211, 835776490, 1016544510, 5399617791, 12900388213, 68523478308, 83344251132, 442702800109
Offset: 1

Views

Author

Pierre CAMI, Mar 27 2005

Keywords

Comments

By construction, a(n) is an integer so 420*a(n)^2 + 420*a(n) + 1 = j(n)^2. The sequence j(n) starts: 1, 1, 29, 71, 379, 461, 2449, 5851, ...

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!(x^3*(x^2+1)*(x^4+2*x^3+14*x^2+2*x+1)/((1-x)*(x^8- 82*x^4 +1)))); // G. C. Greubel, Jul 15 2018
  • Mathematica
    Rest[CoefficientList[Series[x^3*(x^2+1)*(x^4+2*x^3+14*x^2+2*x+1)/((1-x)*(x^8-82*x^4+1)), {x, 0, 30}], x]] (* G. C. Greubel, Jul 15 2018 *)
  • PARI
    x='x+O('x^30); concat([0,0], Vec(x^3*(x^2+1)*(x^4+2*x^3+14*x^2 +2*x +1)/((1-x)*(x^8-82*x^4+1)))) \\ G. C. Greubel, Jul 15 2018
    

Formula

From R. J. Mathar, Nov 13 2009: (Start)
a(n) = a(n-1) + 82*a(n-4) - 82*a(n-5) - a(n-8) + a(n-9).
G.f.: x^3*(x^2+1)*(x^4+2*x^3+14*x^2+2*x+1)/((1-x)*(x^8-82*x^4+1)). (End)

Extensions

Extended by R. J. Mathar, Nov 13 2009